利用深度学习将苏木精-伊红染色转化为 Ki-67 免疫组化数字染色图像:对标记指数的实验验证。

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Imaging Pub Date : 2024-07-01 Epub Date: 2024-07-30 DOI:10.1117/1.JMI.11.4.047501
Cunyuan Ji, Kengo Oshima, Takumi Urata, Fumikazu Kimura, Keiko Ishii, Takeshi Uehara, Kenji Suzuki, Saori Takeyama, Masahiro Yamaguchi
{"title":"利用深度学习将苏木精-伊红染色转化为 Ki-67 免疫组化数字染色图像:对标记指数的实验验证。","authors":"Cunyuan Ji, Kengo Oshima, Takumi Urata, Fumikazu Kimura, Keiko Ishii, Takeshi Uehara, Kenji Suzuki, Saori Takeyama, Masahiro Yamaguchi","doi":"10.1117/1.JMI.11.4.047501","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Endometrial cancer (EC) is one of the most common types of cancer affecting women. While the hematoxylin-and-eosin (H&E) staining remains the standard for histological analysis, the immunohistochemistry (IHC) method provides molecular-level visualizations. Our study proposes a digital staining method to generate the hematoxylin-3,3'-diaminobenzidine (H-DAB) IHC stain of Ki-67 for the whole slide image of the EC tumor from its H&E stain counterpart.</p><p><strong>Approach: </strong>We employed a color unmixing technique to yield stain density maps from the optical density (OD) of the stains and utilized the U-Net for end-to-end inference. The effectiveness of the proposed method was evaluated using the Pearson correlation between the digital and physical stain's labeling index (LI), a key metric indicating tumor proliferation. Two different cross-validation schemes were designed in our study: intraslide validation and cross-case validation (CCV). In the widely used intraslide scheme, the training and validation sets might include different regions from the same slide. The rigorous CCV validation scheme strictly prohibited any validation slide from contributing to training.</p><p><strong>Results: </strong>The proposed method yielded a high-resolution digital stain with preserved histological features, indicating a reliable correlation with the physical stain in terms of the Ki-67 LI. In the intraslide scheme, using intraslide patches resulted in a biased accuracy (e.g., <math><mrow><mi>R</mi> <mo>=</mo> <mn>0.98</mn></mrow> </math> ) significantly higher than that of CCV. The CCV scheme retained a fair correlation (e.g., <math><mrow><mi>R</mi> <mo>=</mo> <mn>0.66</mn></mrow> </math> ) between the LIs calculated from the digital stain and its physical IHC counterpart. Inferring the OD of the IHC stain from that of the H&E stain enhanced the correlation metric, outperforming that of the baseline model using the RGB space.</p><p><strong>Conclusions: </strong>Our study revealed that molecule-level insights could be obtained from H&E images using deep learning. Furthermore, the improvement brought via OD inference indicated a possible method for creating more generalizable models for digital staining via per-stain analysis.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287056/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transformation from hematoxylin-and-eosin staining to Ki-67 immunohistochemistry digital staining images using deep learning: experimental validation on the labeling index.\",\"authors\":\"Cunyuan Ji, Kengo Oshima, Takumi Urata, Fumikazu Kimura, Keiko Ishii, Takeshi Uehara, Kenji Suzuki, Saori Takeyama, Masahiro Yamaguchi\",\"doi\":\"10.1117/1.JMI.11.4.047501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Endometrial cancer (EC) is one of the most common types of cancer affecting women. While the hematoxylin-and-eosin (H&E) staining remains the standard for histological analysis, the immunohistochemistry (IHC) method provides molecular-level visualizations. Our study proposes a digital staining method to generate the hematoxylin-3,3'-diaminobenzidine (H-DAB) IHC stain of Ki-67 for the whole slide image of the EC tumor from its H&E stain counterpart.</p><p><strong>Approach: </strong>We employed a color unmixing technique to yield stain density maps from the optical density (OD) of the stains and utilized the U-Net for end-to-end inference. The effectiveness of the proposed method was evaluated using the Pearson correlation between the digital and physical stain's labeling index (LI), a key metric indicating tumor proliferation. Two different cross-validation schemes were designed in our study: intraslide validation and cross-case validation (CCV). In the widely used intraslide scheme, the training and validation sets might include different regions from the same slide. The rigorous CCV validation scheme strictly prohibited any validation slide from contributing to training.</p><p><strong>Results: </strong>The proposed method yielded a high-resolution digital stain with preserved histological features, indicating a reliable correlation with the physical stain in terms of the Ki-67 LI. In the intraslide scheme, using intraslide patches resulted in a biased accuracy (e.g., <math><mrow><mi>R</mi> <mo>=</mo> <mn>0.98</mn></mrow> </math> ) significantly higher than that of CCV. The CCV scheme retained a fair correlation (e.g., <math><mrow><mi>R</mi> <mo>=</mo> <mn>0.66</mn></mrow> </math> ) between the LIs calculated from the digital stain and its physical IHC counterpart. Inferring the OD of the IHC stain from that of the H&E stain enhanced the correlation metric, outperforming that of the baseline model using the RGB space.</p><p><strong>Conclusions: </strong>Our study revealed that molecule-level insights could be obtained from H&E images using deep learning. Furthermore, the improvement brought via OD inference indicated a possible method for creating more generalizable models for digital staining via per-stain analysis.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287056/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.11.4.047501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.047501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:子宫内膜癌(EC)是妇女最常见的癌症类型之一。虽然苏木精-伊红(H&E)染色仍是组织学分析的标准,但免疫组化(IHC)方法可提供分子水平的可视化。我们的研究提出了一种数字染色方法,通过 H&E 染色法生成 EC 肿瘤整张玻片图像中 Ki-67 的苏木精-3,3'-二氨基联苯胺(H-DAB)IHC 染色法:我们采用了一种颜色不混合技术,从染色剂的光密度(OD)得出染色剂密度图,并利用 U-Net 进行端到端推理。我们利用数字染色和物理染色的标记指数(LI)之间的皮尔逊相关性评估了所提方法的有效性。我们的研究设计了两种不同的交叉验证方案:滑动内验证和交叉案例验证(CCV)。在广泛使用的切片内验证方案中,训练集和验证集可能包括来自同一张切片的不同区域。严格的 CCV 验证方案严格禁止任何验证切片参与训练:结果:所提出的方法得到了保留组织学特征的高分辨率数字染色,表明在 Ki-67 LI 方面与物理染色具有可靠的相关性。在滑动内方案中,使用滑动内补丁的偏倚准确度(如 R = 0.98)明显高于 CCV。CCV 方案保留了数字染色与物理 IHC 计算的 LI 之间的相关性(如 R = 0.66)。从 H&E 染色结果推断 IHC 染色结果的 OD 增强了相关性指标,优于使用 RGB 空间的基线模型:我们的研究表明,利用深度学习可以从 H&E 图像中获得分子级的见解。此外,OD 推理带来的改进表明,通过每染色分析为数字染色创建更具通用性的模型是一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transformation from hematoxylin-and-eosin staining to Ki-67 immunohistochemistry digital staining images using deep learning: experimental validation on the labeling index.

Purpose: Endometrial cancer (EC) is one of the most common types of cancer affecting women. While the hematoxylin-and-eosin (H&E) staining remains the standard for histological analysis, the immunohistochemistry (IHC) method provides molecular-level visualizations. Our study proposes a digital staining method to generate the hematoxylin-3,3'-diaminobenzidine (H-DAB) IHC stain of Ki-67 for the whole slide image of the EC tumor from its H&E stain counterpart.

Approach: We employed a color unmixing technique to yield stain density maps from the optical density (OD) of the stains and utilized the U-Net for end-to-end inference. The effectiveness of the proposed method was evaluated using the Pearson correlation between the digital and physical stain's labeling index (LI), a key metric indicating tumor proliferation. Two different cross-validation schemes were designed in our study: intraslide validation and cross-case validation (CCV). In the widely used intraslide scheme, the training and validation sets might include different regions from the same slide. The rigorous CCV validation scheme strictly prohibited any validation slide from contributing to training.

Results: The proposed method yielded a high-resolution digital stain with preserved histological features, indicating a reliable correlation with the physical stain in terms of the Ki-67 LI. In the intraslide scheme, using intraslide patches resulted in a biased accuracy (e.g., R = 0.98 ) significantly higher than that of CCV. The CCV scheme retained a fair correlation (e.g., R = 0.66 ) between the LIs calculated from the digital stain and its physical IHC counterpart. Inferring the OD of the IHC stain from that of the H&E stain enhanced the correlation metric, outperforming that of the baseline model using the RGB space.

Conclusions: Our study revealed that molecule-level insights could be obtained from H&E images using deep learning. Furthermore, the improvement brought via OD inference indicated a possible method for creating more generalizable models for digital staining via per-stain analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
期刊最新文献
In-silico study of the impact of system design parameters on microcalcification detection in wide-angle digital breast tomosynthesis. Estimation of the absorbed dose in simultaneous digital breast tomosynthesis and mechanical imaging. Breathing motion compensation in chest tomosynthesis: evaluation of the effect on image quality and presence of artifacts. Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring. Our journey toward implementation of digital breast tomosynthesis in breast cancer screening: the Malmö Breast Tomosynthesis Screening Project.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1