社论:基因组编辑超越了 CRISPR,出现了 "桥 "式 RNA 编辑。

IF 3.1 4区 医学 Q1 Medicine Medical Science Monitor Pub Date : 2024-08-01 DOI:10.12659/MSM.945933
Dinah V Parums
{"title":"社论:基因组编辑超越了 CRISPR,出现了 \"桥 \"式 RNA 编辑。","authors":"Dinah V Parums","doi":"10.12659/MSM.945933","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic human gene editing technologies continue to advance, with the endonuclease, clustered regularly interspaced short palindromic repeats (CRISPR) being one of the most rapidly developing technologies. Recently, in 2024, a method of RNA editing called 'bridge editing' has been described in bacteria, which is more powerful and has broader applications than CRISPR to reshape the genome. The term 'bridge editing' is used because the method physically links, or bridges, two sections of DNA and can alter large sections of a genome. 'Bridge editing' relies on insertion sequence (IS) elements, the simplest autonomous transposable elements in prokaryotic genomes. This method provides a unified mechanism for the three fundamental types of DNA rearrangement required for genome design: inversion, insertion, and excision. The 'bridge' recombination system could expand the range and diversity of nucleic acid-guided therapeutic systems beyond RNA interference and CRISPR. This editorial aims to introduce new developments in 'bridge' RNA editing that have the increased potential to reshape the genome.</p>","PeriodicalId":48888,"journal":{"name":"Medical Science Monitor","volume":"30 ","pages":"e945933"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302237/pdf/","citationCount":"0","resultStr":"{\"title\":\"Editorial: Genome Editing Goes Beyond CRISPR with the Emergence of 'Bridge' RNA Editing.\",\"authors\":\"Dinah V Parums\",\"doi\":\"10.12659/MSM.945933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Therapeutic human gene editing technologies continue to advance, with the endonuclease, clustered regularly interspaced short palindromic repeats (CRISPR) being one of the most rapidly developing technologies. Recently, in 2024, a method of RNA editing called 'bridge editing' has been described in bacteria, which is more powerful and has broader applications than CRISPR to reshape the genome. The term 'bridge editing' is used because the method physically links, or bridges, two sections of DNA and can alter large sections of a genome. 'Bridge editing' relies on insertion sequence (IS) elements, the simplest autonomous transposable elements in prokaryotic genomes. This method provides a unified mechanism for the three fundamental types of DNA rearrangement required for genome design: inversion, insertion, and excision. The 'bridge' recombination system could expand the range and diversity of nucleic acid-guided therapeutic systems beyond RNA interference and CRISPR. This editorial aims to introduce new developments in 'bridge' RNA editing that have the increased potential to reshape the genome.</p>\",\"PeriodicalId\":48888,\"journal\":{\"name\":\"Medical Science Monitor\",\"volume\":\"30 \",\"pages\":\"e945933\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Science Monitor\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12659/MSM.945933\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Science Monitor","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12659/MSM.945933","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

治疗性人类基因编辑技术不断进步,其中发展最迅速的技术之一是内切酶--聚类规则间隔短回文重复序列(CRISPR)。最近,即 2024 年,一种名为 "桥接编辑 "的 RNA 编辑方法在细菌中被描述出来,这种方法比 CRISPR 重塑基因组的功能更强大,应用也更广泛。之所以使用 "桥接编辑 "一词,是因为这种方法将两个DNA片段物理连接或桥接起来,可以改变基因组的大片段。桥接编辑 "依赖于插入序列(IS)元件,这是原核生物基因组中最简单的自主可转座元件。这种方法为基因组设计所需的三种基本 DNA 重排提供了统一的机制:反转、插入和切除。桥 "重组系统可以扩大核酸引导的治疗系统的范围和多样性,使其超越 RNA 干扰和 CRISPR。这篇社论旨在介绍 "桥 "RNA 编辑的新进展,这些进展具有重塑基因组的更大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Editorial: Genome Editing Goes Beyond CRISPR with the Emergence of 'Bridge' RNA Editing.

Therapeutic human gene editing technologies continue to advance, with the endonuclease, clustered regularly interspaced short palindromic repeats (CRISPR) being one of the most rapidly developing technologies. Recently, in 2024, a method of RNA editing called 'bridge editing' has been described in bacteria, which is more powerful and has broader applications than CRISPR to reshape the genome. The term 'bridge editing' is used because the method physically links, or bridges, two sections of DNA and can alter large sections of a genome. 'Bridge editing' relies on insertion sequence (IS) elements, the simplest autonomous transposable elements in prokaryotic genomes. This method provides a unified mechanism for the three fundamental types of DNA rearrangement required for genome design: inversion, insertion, and excision. The 'bridge' recombination system could expand the range and diversity of nucleic acid-guided therapeutic systems beyond RNA interference and CRISPR. This editorial aims to introduce new developments in 'bridge' RNA editing that have the increased potential to reshape the genome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Science Monitor
Medical Science Monitor MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
6.40
自引率
3.20%
发文量
514
审稿时长
3.0 months
期刊介绍: Medical Science Monitor (MSM) established in 1995 is an international, peer-reviewed scientific journal which publishes original articles in Clinical Medicine and related disciplines such as Epidemiology and Population Studies, Product Investigations, Development of Laboratory Techniques :: Diagnostics and Medical Technology which enable presentation of research or review works in overlapping areas of medicine and technology such us (but not limited to): medical diagnostics, medical imaging systems, computer simulation of health and disease processes, new medical devices, etc. Reviews and Special Reports - papers may be accepted on the basis that they provide a systematic, critical and up-to-date overview of literature pertaining to research or clinical topics. Meta-analyses are considered as reviews. A special attention will be paid to a teaching value of a review paper. Medical Science Monitor is internationally indexed in Thomson-Reuters Web of Science, Journals Citation Report (JCR), Science Citation Index Expanded (SCI), Index Medicus MEDLINE, PubMed, PMC, EMBASE/Excerpta Medica, Chemical Abstracts CAS and Index Copernicus.
期刊最新文献
Computed Tomography Parameters for Prognosis Prediction in Non-Occlusive Mesenteric Ischemia. Optimizing Anesthetic Management for Laparoscopic Surgery: A Comprehensive Review. Impact of Prior Cesarean Delivery on Pregnancy Outcomes and Hemorrhage Risks in Complete Placenta Previa: A Decade-Long Retrospective Analysis. Analysis of Mortality Causes and Locations in Veterans with ALS: A Decade Review. Surgical Advances in the Treatment of Acromioclavicular Joint Injury: A Comprehensive Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1