Tian Yao Liu, Jin Shan Yan, Xin Li, Lu Xu, Jun Li Hao, Su Ya Zhao, Qi Lin Hu, Fang Jian Na, He Ming Li, Yue Zhao, Ming Fang Zhao
{"title":"FGL1:非小细胞肺癌的新型生物标记物和靶点,通过 KDM4A/STAT3 转录机制促进肿瘤进展和转移。","authors":"Tian Yao Liu, Jin Shan Yan, Xin Li, Lu Xu, Jun Li Hao, Su Ya Zhao, Qi Lin Hu, Fang Jian Na, He Ming Li, Yue Zhao, Ming Fang Zhao","doi":"10.1186/s13046-024-03140-6","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is characterized by a high incidence rate and poor prognosis worldwide. A deeper insight into the pathogenesis of NSCLC and identification of novel therapeutic targets are essential to improve the prognosis of NSCLC. In this study, we revealed that fibrinogen-like protein 1 (FGL1) promotes proliferation, migration, and invasion of NSCLC cells. Mechanistically, we found that Stat3 acts as a transcription factor and can be recruited to the FGL1 promoter, enhancing FGL1 promoter activity. Lysine-specific demethylase 4A (KDM4A) interacts with Stat3 and facilitates the removal of methyl groups from H3K9me3, thereby enhancing Stat3-mediated transcription of FGL1. Furthermore, we observed that Stat3 and KDM4A promote NSCLC cell proliferation, migration, and invasion partly by upregulating FGL1 expression. Additionally, the expression of FGL1 was significantly higher in cancer tissues (n = 90) than in adjacent non-cancerous tissues (n = 90). Furthermore, patients with high FGL1 expression had a shorter overall survival (OS) compared to those with low FGL1 expression. We measured the expression levels of FGL1 on circulating tumor cells (CTCs) in 65 patients and found that patients with a dynamic decrease in FGL1 expression on CTCs exhibited a better therapeutic response. These findings suggest that the dynamic changes in FGL1 expression can serve as a potential biomarker for predicting treatment efficacy in NSCLC. Overall, this study revealed the significant role and regulatory mechanisms of FGL1 in the development of NSCLC, suggesting its potential as a therapeutic target for patients with NSCLC. Future studies should provide more personalized and effective treatment options for patients with NSCLC to improve clinical outcomes.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"213"},"PeriodicalIF":11.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293164/pdf/","citationCount":"0","resultStr":"{\"title\":\"FGL1: a novel biomarker and target for non-small cell lung cancer, promoting tumor progression and metastasis through KDM4A/STAT3 transcription mechanism.\",\"authors\":\"Tian Yao Liu, Jin Shan Yan, Xin Li, Lu Xu, Jun Li Hao, Su Ya Zhao, Qi Lin Hu, Fang Jian Na, He Ming Li, Yue Zhao, Ming Fang Zhao\",\"doi\":\"10.1186/s13046-024-03140-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-small cell lung cancer (NSCLC) is characterized by a high incidence rate and poor prognosis worldwide. A deeper insight into the pathogenesis of NSCLC and identification of novel therapeutic targets are essential to improve the prognosis of NSCLC. In this study, we revealed that fibrinogen-like protein 1 (FGL1) promotes proliferation, migration, and invasion of NSCLC cells. Mechanistically, we found that Stat3 acts as a transcription factor and can be recruited to the FGL1 promoter, enhancing FGL1 promoter activity. Lysine-specific demethylase 4A (KDM4A) interacts with Stat3 and facilitates the removal of methyl groups from H3K9me3, thereby enhancing Stat3-mediated transcription of FGL1. Furthermore, we observed that Stat3 and KDM4A promote NSCLC cell proliferation, migration, and invasion partly by upregulating FGL1 expression. Additionally, the expression of FGL1 was significantly higher in cancer tissues (n = 90) than in adjacent non-cancerous tissues (n = 90). Furthermore, patients with high FGL1 expression had a shorter overall survival (OS) compared to those with low FGL1 expression. We measured the expression levels of FGL1 on circulating tumor cells (CTCs) in 65 patients and found that patients with a dynamic decrease in FGL1 expression on CTCs exhibited a better therapeutic response. These findings suggest that the dynamic changes in FGL1 expression can serve as a potential biomarker for predicting treatment efficacy in NSCLC. Overall, this study revealed the significant role and regulatory mechanisms of FGL1 in the development of NSCLC, suggesting its potential as a therapeutic target for patients with NSCLC. Future studies should provide more personalized and effective treatment options for patients with NSCLC to improve clinical outcomes.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"213\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293164/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03140-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03140-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
FGL1: a novel biomarker and target for non-small cell lung cancer, promoting tumor progression and metastasis through KDM4A/STAT3 transcription mechanism.
Non-small cell lung cancer (NSCLC) is characterized by a high incidence rate and poor prognosis worldwide. A deeper insight into the pathogenesis of NSCLC and identification of novel therapeutic targets are essential to improve the prognosis of NSCLC. In this study, we revealed that fibrinogen-like protein 1 (FGL1) promotes proliferation, migration, and invasion of NSCLC cells. Mechanistically, we found that Stat3 acts as a transcription factor and can be recruited to the FGL1 promoter, enhancing FGL1 promoter activity. Lysine-specific demethylase 4A (KDM4A) interacts with Stat3 and facilitates the removal of methyl groups from H3K9me3, thereby enhancing Stat3-mediated transcription of FGL1. Furthermore, we observed that Stat3 and KDM4A promote NSCLC cell proliferation, migration, and invasion partly by upregulating FGL1 expression. Additionally, the expression of FGL1 was significantly higher in cancer tissues (n = 90) than in adjacent non-cancerous tissues (n = 90). Furthermore, patients with high FGL1 expression had a shorter overall survival (OS) compared to those with low FGL1 expression. We measured the expression levels of FGL1 on circulating tumor cells (CTCs) in 65 patients and found that patients with a dynamic decrease in FGL1 expression on CTCs exhibited a better therapeutic response. These findings suggest that the dynamic changes in FGL1 expression can serve as a potential biomarker for predicting treatment efficacy in NSCLC. Overall, this study revealed the significant role and regulatory mechanisms of FGL1 in the development of NSCLC, suggesting its potential as a therapeutic target for patients with NSCLC. Future studies should provide more personalized and effective treatment options for patients with NSCLC to improve clinical outcomes.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.