Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson
{"title":"survivalContour:通过彩色等高线图直观显示预测存活率。","authors":"Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson","doi":"10.1093/bioadv/vbae105","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks.</p><p><strong>Availability and implementation: </strong>We provide a Shiny app at https://biostatistics.mdanderson.org/shinyapps/survivalContour/ and an R package available at https://github.com/YushuShi/survivalContour as implementations of this tool.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290613/pdf/","citationCount":"0","resultStr":"{\"title\":\"survivalContour: visualizing predicted survival via colored contour plots.\",\"authors\":\"Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson\",\"doi\":\"10.1093/bioadv/vbae105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks.</p><p><strong>Availability and implementation: </strong>We provide a Shiny app at https://biostatistics.mdanderson.org/shinyapps/survivalContour/ and an R package available at https://github.com/YushuShi/survivalContour as implementations of this tool.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290613/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
survivalContour: visualizing predicted survival via colored contour plots.
Summary: Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks.
Availability and implementation: We provide a Shiny app at https://biostatistics.mdanderson.org/shinyapps/survivalContour/ and an R package available at https://github.com/YushuShi/survivalContour as implementations of this tool.