survivalContour:通过彩色等高线图直观显示预测存活率。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-07-25 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae105
Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson
{"title":"survivalContour:通过彩色等高线图直观显示预测存活率。","authors":"Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson","doi":"10.1093/bioadv/vbae105","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks.</p><p><strong>Availability and implementation: </strong>We provide a Shiny app at https://biostatistics.mdanderson.org/shinyapps/survivalContour/ and an R package available at https://github.com/YushuShi/survivalContour as implementations of this tool.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290613/pdf/","citationCount":"0","resultStr":"{\"title\":\"survivalContour: visualizing predicted survival via colored contour plots.\",\"authors\":\"Yushu Shi, Liangliang Zhang, Kim-Anh Do, Robert R Jenq, Christine B Peterson\",\"doi\":\"10.1093/bioadv/vbae105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Summary: </strong>Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks.</p><p><strong>Availability and implementation: </strong>We provide a Shiny app at https://biostatistics.mdanderson.org/shinyapps/survivalContour/ and an R package available at https://github.com/YushuShi/survivalContour as implementations of this tool.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290613/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:生存分析技术的进步为数据建模带来了前所未有的灵活性,但目前仍缺乏说明连续协变量对预测生存结果影响的工具。我们建议使用彩色等值线图来描述随时间变化的预测生存概率。我们的方法能够支持传统模型,包括 Cox 和 Fine-Gray 模型。然而,当与随机生存森林和深度神经网络等前沿机器学习模型结合使用时,我们的方法将大放异彩:我们在 https://biostatistics.mdanderson.org/shinyapps/survivalContour/ 上提供了一个 Shiny 应用程序,并在 https://github.com/YushuShi/survivalContour 上提供了一个 R 软件包作为该工具的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
survivalContour: visualizing predicted survival via colored contour plots.

Summary: Advances in survival analysis have facilitated unprecedented flexibility in data modeling, yet there remains a lack of tools for illustrating the influence of continuous covariates on predicted survival outcomes. We propose the utilization of a colored contour plot to depict the predicted survival probabilities over time. Our approach is capable of supporting conventional models, including the Cox and Fine-Gray models. However, its capability shines when coupled with cutting-edge machine learning models such as random survival forests and deep neural networks.

Availability and implementation: We provide a Shiny app at https://biostatistics.mdanderson.org/shinyapps/survivalContour/ and an R package available at https://github.com/YushuShi/survivalContour as implementations of this tool.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases. TransAnnot-a fast transcriptome annotation pipeline. PatchProt: hydrophobic patch prediction using protein foundation models. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. CAPTVRED: an automated pipeline for viral tracking and discovery from capture-based metagenomics samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1