Lin Ding, Xiaofu Wang, Xiaoyun Chen, Xiaoli Xu, Wei Wei, Lei Yang, Yi Ji, Jian Wu, Junfeng Xu, Cheng Peng
{"title":"开发新型 Cas13a/Cas12a 介导的转基因作物 \"一锅式 \"双重检测试验。","authors":"Lin Ding, Xiaofu Wang, Xiaoyun Chen, Xiaoli Xu, Wei Wei, Lei Yang, Yi Ji, Jian Wu, Junfeng Xu, Cheng Peng","doi":"10.1016/j.jare.2024.07.027","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Genetically modified (GM) crops have been widely cultivated across the world and the development of rapid, ultrasensitive, visual multiplex detection platforms that are suitable for field deployment is critical for GM organism regulation.</p><p><strong>Objective: </strong>In this study, we developed a novel one-pot system, termed MR-DCA (Multiplex RPA and Dual CRISPR assay), for the simultaneous detection of CaMV35S and NOS genetic targets in GM crops. This innovative approach combined Multiplex RPA (recombinase polymerase amplification) with the Dual CRISPR (clustered regularly interspaced short palindromic repeat) assay technique, to provide a streamlined and efficient method for GM crop detection.</p><p><strong>Methods: </strong>The RPA reaction used for amplification CaMV35S and NOS targets was contained in the tube base, while the dual CRISPR enzymes were placed in the tube cap. Following centrifugation, the dual CRISPR (Cas13a/Cas12a) detection system was initiated. Fluorescence visualization was used to measure CaMV35S through the FAM channel and NOS through the HEX channel. When using lateral flow strips, CaMV35S was detected using rabbit anti-digoxin (blue line), whilst NOS was identified using anti-mouse FITC (red line). Line intensity was quantified using Image J and depicted graphically.</p><p><strong>Results: </strong>Detection of the targets was completed in 35 min, with a limit of detection as low as 20 copies. In addition, two analysis systems were developed and they performed well in the MR-DCA assay. In an analysis of 24 blind samples from GM crops with a wide genomic range, MR-DCA gave consistent results with the quantitative PCR method, which indicated high accuracy, applicability and semi-quantitative ability.</p><p><strong>Conclusion: </strong>The development of MR-DCA represents a significant advancement in the field of GM detection, offering a rapid, sensitive and portable method for multiple target detection that can be used in resource-limited environments.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a novel Cas13a/Cas12a-mediated 'one-pot' dual detection assay for genetically modified crops.\",\"authors\":\"Lin Ding, Xiaofu Wang, Xiaoyun Chen, Xiaoli Xu, Wei Wei, Lei Yang, Yi Ji, Jian Wu, Junfeng Xu, Cheng Peng\",\"doi\":\"10.1016/j.jare.2024.07.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Genetically modified (GM) crops have been widely cultivated across the world and the development of rapid, ultrasensitive, visual multiplex detection platforms that are suitable for field deployment is critical for GM organism regulation.</p><p><strong>Objective: </strong>In this study, we developed a novel one-pot system, termed MR-DCA (Multiplex RPA and Dual CRISPR assay), for the simultaneous detection of CaMV35S and NOS genetic targets in GM crops. This innovative approach combined Multiplex RPA (recombinase polymerase amplification) with the Dual CRISPR (clustered regularly interspaced short palindromic repeat) assay technique, to provide a streamlined and efficient method for GM crop detection.</p><p><strong>Methods: </strong>The RPA reaction used for amplification CaMV35S and NOS targets was contained in the tube base, while the dual CRISPR enzymes were placed in the tube cap. Following centrifugation, the dual CRISPR (Cas13a/Cas12a) detection system was initiated. Fluorescence visualization was used to measure CaMV35S through the FAM channel and NOS through the HEX channel. When using lateral flow strips, CaMV35S was detected using rabbit anti-digoxin (blue line), whilst NOS was identified using anti-mouse FITC (red line). Line intensity was quantified using Image J and depicted graphically.</p><p><strong>Results: </strong>Detection of the targets was completed in 35 min, with a limit of detection as low as 20 copies. In addition, two analysis systems were developed and they performed well in the MR-DCA assay. In an analysis of 24 blind samples from GM crops with a wide genomic range, MR-DCA gave consistent results with the quantitative PCR method, which indicated high accuracy, applicability and semi-quantitative ability.</p><p><strong>Conclusion: </strong>The development of MR-DCA represents a significant advancement in the field of GM detection, offering a rapid, sensitive and portable method for multiple target detection that can be used in resource-limited environments.</p>\",\"PeriodicalId\":94063,\"journal\":{\"name\":\"Journal of advanced research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of advanced research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jare.2024.07.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of advanced research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.07.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a novel Cas13a/Cas12a-mediated 'one-pot' dual detection assay for genetically modified crops.
Introduction: Genetically modified (GM) crops have been widely cultivated across the world and the development of rapid, ultrasensitive, visual multiplex detection platforms that are suitable for field deployment is critical for GM organism regulation.
Objective: In this study, we developed a novel one-pot system, termed MR-DCA (Multiplex RPA and Dual CRISPR assay), for the simultaneous detection of CaMV35S and NOS genetic targets in GM crops. This innovative approach combined Multiplex RPA (recombinase polymerase amplification) with the Dual CRISPR (clustered regularly interspaced short palindromic repeat) assay technique, to provide a streamlined and efficient method for GM crop detection.
Methods: The RPA reaction used for amplification CaMV35S and NOS targets was contained in the tube base, while the dual CRISPR enzymes were placed in the tube cap. Following centrifugation, the dual CRISPR (Cas13a/Cas12a) detection system was initiated. Fluorescence visualization was used to measure CaMV35S through the FAM channel and NOS through the HEX channel. When using lateral flow strips, CaMV35S was detected using rabbit anti-digoxin (blue line), whilst NOS was identified using anti-mouse FITC (red line). Line intensity was quantified using Image J and depicted graphically.
Results: Detection of the targets was completed in 35 min, with a limit of detection as low as 20 copies. In addition, two analysis systems were developed and they performed well in the MR-DCA assay. In an analysis of 24 blind samples from GM crops with a wide genomic range, MR-DCA gave consistent results with the quantitative PCR method, which indicated high accuracy, applicability and semi-quantitative ability.
Conclusion: The development of MR-DCA represents a significant advancement in the field of GM detection, offering a rapid, sensitive and portable method for multiple target detection that can be used in resource-limited environments.