模拟合成孔径雷达先验知识引导的证据深度学习,用于可靠的几发合成孔径雷达目标识别

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL ISPRS Journal of Photogrammetry and Remote Sensing Pub Date : 2024-07-30 DOI:10.1016/j.isprsjprs.2024.07.014
{"title":"模拟合成孔径雷达先验知识引导的证据深度学习,用于可靠的几发合成孔径雷达目标识别","authors":"","doi":"10.1016/j.isprsjprs.2024.07.014","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) plays a pivotal role in civilian and military applications. However, the limited labeled samples present a significant challenge in deep learning-based SAR ATR. Few-shot learning (FSL) offers a potential solution, but models trained with limited samples may produce a high probability of incorrect results that can mislead decision-makers. To address this, we introduce uncertainty estimation into SAR ATR and propose Prior knowledge-guided Evidential Deep Learning (Prior-EDL) to ensure reliable recognition in FSL. Inspired by Bayesian principles, Prior-EDL leverages prior knowledge for improved predictions and uncertainty estimation. We use a deep learning model pre-trained on simulated SAR data to discover category correlations and represent them as label distributions. This knowledge is then embedded into the target model via a Prior-EDL loss function, which selectively uses the prior knowledge of samples due to the distribution shift between simulated data and real data. To unify the discovery and embedding of prior knowledge, we propose a framework based on the teacher-student network. Our approach enhances the model’s evidence assignment, improving its uncertainty estimation performance and target recognition accuracy. Extensive experiments on the MSTAR dataset demonstrate the effectiveness of Prior-EDL, achieving recognition accuracies of 70.19% and 92.97% in 4-way 1-shot and 4-way 20-shot scenarios, respectively. For Out-Of-Distribution data, Prior-EDL outperforms other uncertainty estimation methods. The code is available at <span><span>https://github.com/Xiaoyan-Zhou/Prior-EDL/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulated SAR prior knowledge guided evidential deep learning for reliable few-shot SAR target recognition\",\"authors\":\"\",\"doi\":\"10.1016/j.isprsjprs.2024.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) plays a pivotal role in civilian and military applications. However, the limited labeled samples present a significant challenge in deep learning-based SAR ATR. Few-shot learning (FSL) offers a potential solution, but models trained with limited samples may produce a high probability of incorrect results that can mislead decision-makers. To address this, we introduce uncertainty estimation into SAR ATR and propose Prior knowledge-guided Evidential Deep Learning (Prior-EDL) to ensure reliable recognition in FSL. Inspired by Bayesian principles, Prior-EDL leverages prior knowledge for improved predictions and uncertainty estimation. We use a deep learning model pre-trained on simulated SAR data to discover category correlations and represent them as label distributions. This knowledge is then embedded into the target model via a Prior-EDL loss function, which selectively uses the prior knowledge of samples due to the distribution shift between simulated data and real data. To unify the discovery and embedding of prior knowledge, we propose a framework based on the teacher-student network. Our approach enhances the model’s evidence assignment, improving its uncertainty estimation performance and target recognition accuracy. Extensive experiments on the MSTAR dataset demonstrate the effectiveness of Prior-EDL, achieving recognition accuracies of 70.19% and 92.97% in 4-way 1-shot and 4-way 20-shot scenarios, respectively. For Out-Of-Distribution data, Prior-EDL outperforms other uncertainty estimation methods. The code is available at <span><span>https://github.com/Xiaoyan-Zhou/Prior-EDL/</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624002818\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624002818","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

合成孔径雷达(SAR)自动目标识别(ATR)在民用和军事应用中发挥着举足轻重的作用。然而,有限的标注样本给基于深度学习的合成孔径雷达自动目标识别(ATR)带来了巨大挑战。少量学习(FSL)提供了一种潜在的解决方案,但使用有限样本训练的模型可能会产生高概率的错误结果,从而误导决策者。为了解决这个问题,我们在 SAR ATR 中引入了不确定性估计,并提出了以先验知识为指导的证据深度学习(Prior-EDL),以确保在 FSL 中进行可靠的识别。受贝叶斯原理的启发,Prior-EDL 利用先验知识改进预测和不确定性估计。我们使用在模拟 SAR 数据上预先训练的深度学习模型来发现类别相关性,并将其表示为标签分布。然后通过先验-EDL 损失函数将这些知识嵌入到目标模型中,由于模拟数据和真实数据之间的分布偏移,先验-EDL 损失函数会选择性地使用样本的先验知识。为了统一先验知识的发现和嵌入,我们提出了一个基于师生网络的框架。我们的方法增强了模型的证据分配,提高了其不确定性估计性能和目标识别准确率。在 MSTAR 数据集上进行的大量实验证明了 Prior-EDL 的有效性,在 4 路 1 发和 4 路 20 发场景下,识别准确率分别达到了 70.19% 和 92.97%。对于分布外数据,Prior-EDL 的表现优于其他不确定性估计方法。代码可在以下网址获取
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulated SAR prior knowledge guided evidential deep learning for reliable few-shot SAR target recognition

Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) plays a pivotal role in civilian and military applications. However, the limited labeled samples present a significant challenge in deep learning-based SAR ATR. Few-shot learning (FSL) offers a potential solution, but models trained with limited samples may produce a high probability of incorrect results that can mislead decision-makers. To address this, we introduce uncertainty estimation into SAR ATR and propose Prior knowledge-guided Evidential Deep Learning (Prior-EDL) to ensure reliable recognition in FSL. Inspired by Bayesian principles, Prior-EDL leverages prior knowledge for improved predictions and uncertainty estimation. We use a deep learning model pre-trained on simulated SAR data to discover category correlations and represent them as label distributions. This knowledge is then embedded into the target model via a Prior-EDL loss function, which selectively uses the prior knowledge of samples due to the distribution shift between simulated data and real data. To unify the discovery and embedding of prior knowledge, we propose a framework based on the teacher-student network. Our approach enhances the model’s evidence assignment, improving its uncertainty estimation performance and target recognition accuracy. Extensive experiments on the MSTAR dataset demonstrate the effectiveness of Prior-EDL, achieving recognition accuracies of 70.19% and 92.97% in 4-way 1-shot and 4-way 20-shot scenarios, respectively. For Out-Of-Distribution data, Prior-EDL outperforms other uncertainty estimation methods. The code is available at https://github.com/Xiaoyan-Zhou/Prior-EDL/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
期刊最新文献
Integrating synthetic datasets with CLIP semantic insights for single image localization advancements Selective weighted least square and piecewise bilinear transformation for accurate satellite DSM generation Word2Scene: Efficient remote sensing image scene generation with only one word via hybrid intelligence and low-rank representation A_OPTRAM-ET: An automatic optical trapezoid model for evapotranspiration estimation and its global-scale assessments Atmospheric correction of geostationary ocean color imager data over turbid coastal waters under high solar zenith angles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1