{"title":"用于水相关光学图像增强的自适应变分分解技术","authors":"","doi":"10.1016/j.isprsjprs.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>Underwater images suffer from blurred details and color distortion due to light attenuation from scattering and absorption. Current underwater image enhancement (UIE) methods overlook the effects of forward scattering, leading to difficulties in addressing low contrast and blurriness. To address the challenges caused by forward and backward scattering, we propose a novel variational-based adaptive method for removing scattering components. Our method addresses both forward and backward scattering and effectively removes interference from suspended particles, significantly enhancing image clarity and contrast for underwater applications. Specifically, our method employs a backward scattering pre-processing method to correct erroneous pixel interferences and histogram equalization to remove color bias, improving image contrast. The backward scattering noise removal method in the variational model uses horizontal and vertical gradients as constraints to remove backward scattering noise. However, it can remove a small portion of forward scattering components caused by light deviation. We develop an adaptive method using the Manhattan Distance to completely remove forward scattering. Our approach integrates prior knowledge to construct penalty terms and uses a fast solver to achieve strong decoupling of incident light and reflectance. We effectively enhance image contrast and color correction by combining variational methods with histogram equalization. Our method outperforms state-of-the-art methods on the UIEB dataset, achieving UCIQE and URanker scores of 0.636 and 2.411, respectively.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive variational decomposition for water-related optical image enhancement\",\"authors\":\"\",\"doi\":\"10.1016/j.isprsjprs.2024.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Underwater images suffer from blurred details and color distortion due to light attenuation from scattering and absorption. Current underwater image enhancement (UIE) methods overlook the effects of forward scattering, leading to difficulties in addressing low contrast and blurriness. To address the challenges caused by forward and backward scattering, we propose a novel variational-based adaptive method for removing scattering components. Our method addresses both forward and backward scattering and effectively removes interference from suspended particles, significantly enhancing image clarity and contrast for underwater applications. Specifically, our method employs a backward scattering pre-processing method to correct erroneous pixel interferences and histogram equalization to remove color bias, improving image contrast. The backward scattering noise removal method in the variational model uses horizontal and vertical gradients as constraints to remove backward scattering noise. However, it can remove a small portion of forward scattering components caused by light deviation. We develop an adaptive method using the Manhattan Distance to completely remove forward scattering. Our approach integrates prior knowledge to construct penalty terms and uses a fast solver to achieve strong decoupling of incident light and reflectance. We effectively enhance image contrast and color correction by combining variational methods with histogram equalization. Our method outperforms state-of-the-art methods on the UIEB dataset, achieving UCIQE and URanker scores of 0.636 and 2.411, respectively.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624002806\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624002806","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Adaptive variational decomposition for water-related optical image enhancement
Underwater images suffer from blurred details and color distortion due to light attenuation from scattering and absorption. Current underwater image enhancement (UIE) methods overlook the effects of forward scattering, leading to difficulties in addressing low contrast and blurriness. To address the challenges caused by forward and backward scattering, we propose a novel variational-based adaptive method for removing scattering components. Our method addresses both forward and backward scattering and effectively removes interference from suspended particles, significantly enhancing image clarity and contrast for underwater applications. Specifically, our method employs a backward scattering pre-processing method to correct erroneous pixel interferences and histogram equalization to remove color bias, improving image contrast. The backward scattering noise removal method in the variational model uses horizontal and vertical gradients as constraints to remove backward scattering noise. However, it can remove a small portion of forward scattering components caused by light deviation. We develop an adaptive method using the Manhattan Distance to completely remove forward scattering. Our approach integrates prior knowledge to construct penalty terms and uses a fast solver to achieve strong decoupling of incident light and reflectance. We effectively enhance image contrast and color correction by combining variational methods with histogram equalization. Our method outperforms state-of-the-art methods on the UIEB dataset, achieving UCIQE and URanker scores of 0.636 and 2.411, respectively.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.