与环境的有限强度耦合引起的哈密顿修正

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-07-29 DOI:10.1103/physreve.110.014144
Marcin Łobejko, Marek Winczewski, Gerardo Suárez, Robert Alicki, Michał Horodecki
{"title":"与环境的有限强度耦合引起的哈密顿修正","authors":"Marcin Łobejko, Marek Winczewski, Gerardo Suárez, Robert Alicki, Michał Horodecki","doi":"10.1103/physreve.110.014144","DOIUrl":null,"url":null,"abstract":"If a quantum system interacts with the environment, then the Hamiltonian acquires a correction known as the Lamb-shift term. There are two other corrections to the Hamiltonian, related to the stationary state. Namely, the stationary state is to first approximation a Gibbs state with respect to original Hamiltonian. However, if we have finite coupling, then the true stationary state will be different, and regarding it as a Gibbs state to some effective Hamiltonian, one can extract a correction, which is called “steady-state” correction. Alternatively, one can take a static point of view, and consider the reduced state of total equilibrium state, i.e., system plus bath Gibbs state. The extracted Hamiltonian correction is called the “mean-force” correction. This paper presents several analytical results on second-order corrections (in coupling strength) of the three types mentioned above. Instead of the steady state, we focus on a state annihilated by the Liouvillian of the master equation, labeling it as the “quasi-steady state.” Specifically, we derive a general formula for the mean-force correction as well as the quasi-steady state and Lamb-shift correction for a general class of master equations. Furthermore, specific formulas for corrections are obtained for the Davies, Bloch-Redfield, and cumulant equation (refined weak coupling). In particular, the cumulant equation serves as a case study of the Liouvillian, featuring a nontrivial fourth-order generator. This generator forms the basis for calculating the diagonal quasi-steady-state correction. We consider spin-boson model as an example, and in addition to using our formulas for corrections, we consider mean-force correction from reaction-coordinate approach.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrections to the Hamiltonian induced by finite-strength coupling to the environment\",\"authors\":\"Marcin Łobejko, Marek Winczewski, Gerardo Suárez, Robert Alicki, Michał Horodecki\",\"doi\":\"10.1103/physreve.110.014144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If a quantum system interacts with the environment, then the Hamiltonian acquires a correction known as the Lamb-shift term. There are two other corrections to the Hamiltonian, related to the stationary state. Namely, the stationary state is to first approximation a Gibbs state with respect to original Hamiltonian. However, if we have finite coupling, then the true stationary state will be different, and regarding it as a Gibbs state to some effective Hamiltonian, one can extract a correction, which is called “steady-state” correction. Alternatively, one can take a static point of view, and consider the reduced state of total equilibrium state, i.e., system plus bath Gibbs state. The extracted Hamiltonian correction is called the “mean-force” correction. This paper presents several analytical results on second-order corrections (in coupling strength) of the three types mentioned above. Instead of the steady state, we focus on a state annihilated by the Liouvillian of the master equation, labeling it as the “quasi-steady state.” Specifically, we derive a general formula for the mean-force correction as well as the quasi-steady state and Lamb-shift correction for a general class of master equations. Furthermore, specific formulas for corrections are obtained for the Davies, Bloch-Redfield, and cumulant equation (refined weak coupling). In particular, the cumulant equation serves as a case study of the Liouvillian, featuring a nontrivial fourth-order generator. This generator forms the basis for calculating the diagonal quasi-steady-state correction. We consider spin-boson model as an example, and in addition to using our formulas for corrections, we consider mean-force correction from reaction-coordinate approach.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.014144\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.014144","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

如果量子系统与环境发生相互作用,那么哈密顿就会获得一个称为 "Lamb-shift "项的修正。哈密顿还有两个修正项与静止态有关。也就是说,相对于原始哈密顿来说,静止态是第一近似的吉布斯态。然而,如果我们的耦合是有限的,那么真正的静止态就会不同,将其视为某个有效哈密顿的吉布斯态,就可以提取出一种修正,即 "稳态 "修正。或者,也可以从静态角度出发,考虑总平衡态的还原状态,即系统加浴吉布斯态。提取的哈密顿修正称为 "平均力 "修正。本文介绍了上述三种类型的二阶修正(耦合强度)的若干分析结果。我们关注的不是稳态,而是被主方程的柳维利亚湮没的状态,将其称为 "准稳态"。具体地说,我们推导出了平均力修正的一般公式,以及一般类主方程的准稳态和 Lamb shift 修正。此外,我们还获得了戴维斯、布洛赫-雷德菲尔德和累积方程(精制弱耦合)的具体修正公式。特别是,累积方程作为柳维利方程的一个案例研究,具有一个非难四阶发生器。这个发生器构成了计算对角准稳态修正的基础。我们以自旋玻色子模型为例,除了使用我们的修正公式外,还考虑了反应坐标方法的平均力修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corrections to the Hamiltonian induced by finite-strength coupling to the environment
If a quantum system interacts with the environment, then the Hamiltonian acquires a correction known as the Lamb-shift term. There are two other corrections to the Hamiltonian, related to the stationary state. Namely, the stationary state is to first approximation a Gibbs state with respect to original Hamiltonian. However, if we have finite coupling, then the true stationary state will be different, and regarding it as a Gibbs state to some effective Hamiltonian, one can extract a correction, which is called “steady-state” correction. Alternatively, one can take a static point of view, and consider the reduced state of total equilibrium state, i.e., system plus bath Gibbs state. The extracted Hamiltonian correction is called the “mean-force” correction. This paper presents several analytical results on second-order corrections (in coupling strength) of the three types mentioned above. Instead of the steady state, we focus on a state annihilated by the Liouvillian of the master equation, labeling it as the “quasi-steady state.” Specifically, we derive a general formula for the mean-force correction as well as the quasi-steady state and Lamb-shift correction for a general class of master equations. Furthermore, specific formulas for corrections are obtained for the Davies, Bloch-Redfield, and cumulant equation (refined weak coupling). In particular, the cumulant equation serves as a case study of the Liouvillian, featuring a nontrivial fourth-order generator. This generator forms the basis for calculating the diagonal quasi-steady-state correction. We consider spin-boson model as an example, and in addition to using our formulas for corrections, we consider mean-force correction from reaction-coordinate approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Attractive-repulsive interaction in coupled quantum oscillators Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids Wakefield-driven filamentation of warm beams in plasma Erratum: General existence and determination of conjugate fields in dynamically ordered magnetic systems [Phys. Rev. E 104, 044125 (2021)] Death-birth adaptive dynamics: modeling trait evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1