X 射线计算机断层扫描与用于猪胴体瘦肉率预测的鲁棒化学计量潜空间建模相结合

IF 2.3 4区 化学 Q1 SOCIAL WORK Journal of Chemometrics Pub Date : 2024-07-31 DOI:10.1002/cem.3591
Puneet Mishra, Maria Font-i-Furnols
{"title":"X 射线计算机断层扫描与用于猪胴体瘦肉率预测的鲁棒化学计量潜空间建模相结合","authors":"Puneet Mishra,&nbsp;Maria Font-i-Furnols","doi":"10.1002/cem.3591","DOIUrl":null,"url":null,"abstract":"<p>This study presents a case of processing X-ray computed tomography (CT) data for pork scans using chemometric latent space modeling. The distribution of voxel intensities is shown to exemplify a multivariate, multi-collinear signal mixture. While this concept is not novel, it is revisited here from a chemometric perspective. To extract meaningful information from such multivariate signals, latent space modeling based on partial least squares (PLS) is an ideal solution. Furthermore, a robust PLS approach is even more effective for latent space modeling, as it can extract latent spaces unaffected by outliers, thereby enhancing predictive modeling. As an example, lean meat percentage is predicted using X-ray CT data and robust PLS regression. This method is applicable to X-ray CT quantification analysis, particularly in cases where unclear, erroneous, and outlying observations are suspected in the data.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"38 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3591","citationCount":"0","resultStr":"{\"title\":\"X-Ray Computed Tomography Meets Robust Chemometric Latent Space Modeling for Lean Meat Percentage Prediction in Pig Carcasses\",\"authors\":\"Puneet Mishra,&nbsp;Maria Font-i-Furnols\",\"doi\":\"10.1002/cem.3591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a case of processing X-ray computed tomography (CT) data for pork scans using chemometric latent space modeling. The distribution of voxel intensities is shown to exemplify a multivariate, multi-collinear signal mixture. While this concept is not novel, it is revisited here from a chemometric perspective. To extract meaningful information from such multivariate signals, latent space modeling based on partial least squares (PLS) is an ideal solution. Furthermore, a robust PLS approach is even more effective for latent space modeling, as it can extract latent spaces unaffected by outliers, thereby enhancing predictive modeling. As an example, lean meat percentage is predicted using X-ray CT data and robust PLS regression. This method is applicable to X-ray CT quantification analysis, particularly in cases where unclear, erroneous, and outlying observations are suspected in the data.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"38 10\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3591\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3591\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3591","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了利用化学计量潜空间建模处理猪肉扫描的 X 射线计算机断层扫描(CT)数据的案例。研究表明,体素强度的分布是多变量、多共线性信号混合物的典范。虽然这一概念并不新颖,但本文从化学计量学的角度对其进行了重新审视。要从这种多变量信号中提取有意义的信息,基于偏最小二乘法(PLS)的潜在空间建模是一种理想的解决方案。此外,稳健的偏最小二乘法对潜在空间建模更为有效,因为它可以提取不受异常值影响的潜在空间,从而增强预测建模能力。例如,利用 X 射线 CT 数据和稳健 PLS 回归预测瘦肉率。这种方法适用于 X 射线 CT 定量分析,特别是在怀疑数据中存在不清晰、错误和离群观测值的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
X-Ray Computed Tomography Meets Robust Chemometric Latent Space Modeling for Lean Meat Percentage Prediction in Pig Carcasses

This study presents a case of processing X-ray computed tomography (CT) data for pork scans using chemometric latent space modeling. The distribution of voxel intensities is shown to exemplify a multivariate, multi-collinear signal mixture. While this concept is not novel, it is revisited here from a chemometric perspective. To extract meaningful information from such multivariate signals, latent space modeling based on partial least squares (PLS) is an ideal solution. Furthermore, a robust PLS approach is even more effective for latent space modeling, as it can extract latent spaces unaffected by outliers, thereby enhancing predictive modeling. As an example, lean meat percentage is predicted using X-ray CT data and robust PLS regression. This method is applicable to X-ray CT quantification analysis, particularly in cases where unclear, erroneous, and outlying observations are suspected in the data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
期刊最新文献
Issue Information Cover Image Past, Present and Future of Research in Analytical Figures of Merit Analytical Figures of Merit in Univariate, Multivariate, and Multiway Calibration: What Have We Learned? What Do We Still Need to Learn? Paul Geladi (1951–2024) Chemometrician, spectroscopist and pioneer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1