带有电子控制栅极的新型低导通电压反向导电 LIGBT

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-07-29 DOI:10.1109/LED.2024.3435037
Baoxing Duan;Jiasen Wang;Chunping Tang;Yintang Yang
{"title":"带有电子控制栅极的新型低导通电压反向导电 LIGBT","authors":"Baoxing Duan;Jiasen Wang;Chunping Tang;Yintang Yang","doi":"10.1109/LED.2024.3435037","DOIUrl":null,"url":null,"abstract":"A novel Reverse-Conducting Lateral Insulated Gate Bipolar Transistor (RC-LIGBT) is proposed and investigated in this letter for the first time, which features the Electron-controlled Gate (EG) and Separated Short-Anode (SSA), named as EGSSA LIGBT. The EG structure is made up of two p-n junctions and is connected to the gate and anode of the device. In the on-state, EG is clamped at a high gate potential. Thus, a high-density electron channel to the anode is formed on the surface of the drift region, which greatly reduces the on-state voltage drop (\n<inline-formula> <tex-math>${V} _{\\text {on}}\\text {)}$ </tex-math></inline-formula>\n of EGSSA LIGBT. Meanwhile, based on the EG structure, a low-doping p-drift can be used, which forms an inverse p-n junction with the \n<inline-formula> <tex-math>$\\text {n} ^{+}$ </tex-math></inline-formula>\n anode. Therefore, it requires only a small additional area to eliminate the snapback voltage and achieve the RC characteristic. In addition, the turn-off loss (\n<inline-formula> <tex-math>${E} _{\\text {off}}\\text {)}$ </tex-math></inline-formula>\n of EGSSA LIGBT is optimized by using a short-circuit anode. As simulation results show, EGSSA LIGBT achieves an extremely small V\n<sub>on</sub>\n of 1.03V, which is 42% and 65% lower than that of Conv. LIGBT and SSA LIGBT at the same \n<inline-formula> <tex-math>${E} _{\\text {off}}$ </tex-math></inline-formula>\n. And at the same \n<inline-formula> <tex-math>${V} _{\\text {on}}$ </tex-math></inline-formula>\n, the \n<inline-formula> <tex-math>${E} _{\\text {off}}$ </tex-math></inline-formula>\n of EGSSA LIGBT is 0.10mJ/cm\n<sup>2</sup>\n, 96% lower than that of Conv. LIGBT. What’s more, the proposed device also achieves lower reverse recovery charge (\n<inline-formula> <tex-math>${Q} _{\\text {rr}}\\text {)}$ </tex-math></inline-formula>\n and smaller RC voltage drop (\n<inline-formula> <tex-math>${V} _{\\text {R}}\\text {)}$ </tex-math></inline-formula>\n than SSA LIGBT.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Low On-State Voltage Reverse-Conducting LIGBT With an Electron-Controlled Gate\",\"authors\":\"Baoxing Duan;Jiasen Wang;Chunping Tang;Yintang Yang\",\"doi\":\"10.1109/LED.2024.3435037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel Reverse-Conducting Lateral Insulated Gate Bipolar Transistor (RC-LIGBT) is proposed and investigated in this letter for the first time, which features the Electron-controlled Gate (EG) and Separated Short-Anode (SSA), named as EGSSA LIGBT. The EG structure is made up of two p-n junctions and is connected to the gate and anode of the device. In the on-state, EG is clamped at a high gate potential. Thus, a high-density electron channel to the anode is formed on the surface of the drift region, which greatly reduces the on-state voltage drop (\\n<inline-formula> <tex-math>${V} _{\\\\text {on}}\\\\text {)}$ </tex-math></inline-formula>\\n of EGSSA LIGBT. Meanwhile, based on the EG structure, a low-doping p-drift can be used, which forms an inverse p-n junction with the \\n<inline-formula> <tex-math>$\\\\text {n} ^{+}$ </tex-math></inline-formula>\\n anode. Therefore, it requires only a small additional area to eliminate the snapback voltage and achieve the RC characteristic. In addition, the turn-off loss (\\n<inline-formula> <tex-math>${E} _{\\\\text {off}}\\\\text {)}$ </tex-math></inline-formula>\\n of EGSSA LIGBT is optimized by using a short-circuit anode. As simulation results show, EGSSA LIGBT achieves an extremely small V\\n<sub>on</sub>\\n of 1.03V, which is 42% and 65% lower than that of Conv. LIGBT and SSA LIGBT at the same \\n<inline-formula> <tex-math>${E} _{\\\\text {off}}$ </tex-math></inline-formula>\\n. And at the same \\n<inline-formula> <tex-math>${V} _{\\\\text {on}}$ </tex-math></inline-formula>\\n, the \\n<inline-formula> <tex-math>${E} _{\\\\text {off}}$ </tex-math></inline-formula>\\n of EGSSA LIGBT is 0.10mJ/cm\\n<sup>2</sup>\\n, 96% lower than that of Conv. LIGBT. What’s more, the proposed device also achieves lower reverse recovery charge (\\n<inline-formula> <tex-math>${Q} _{\\\\text {rr}}\\\\text {)}$ </tex-math></inline-formula>\\n and smaller RC voltage drop (\\n<inline-formula> <tex-math>${V} _{\\\\text {R}}\\\\text {)}$ </tex-math></inline-formula>\\n than SSA LIGBT.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10613827/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10613827/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文首次提出并研究了一种新型反向导电侧绝缘栅双极晶体管(RC-LIGBT),它具有电子控制栅极(EG)和分离式短阳极(SSA),被命名为 EGSSA LIGBT。EG 结构由两个 p-n 结组成,分别与器件的栅极和阳极相连。在导通状态下,EG 被箝位在较高的栅极电位上。这样,在漂移区表面就形成了一条通向阳极的高密度电子通道,从而大大降低了 EGSSA LIGBT 的导通压降(${V} _\{text {on}\text {)}$。同时,基于 EG 结构,可以使用低掺杂 p 漂移,从而与 $\text {n}$ 阳极形成反 p-n 结。^{+}$ 阳极。因此,只需要很小的额外面积就能消除快返电压并实现 RC 特性。此外,通过使用短路阳极,还优化了 EGSSA LIGBT 的关断损耗(${E} _\text {off}}\text {)}$。仿真结果表明,EGSSA LIGBT 实现了 1.03V 的极小 Von,比 Conv.LIGBT 和 SSA LIGBT 的 42% 和 65%。${E} _{text\ {off}}$ 。在相同的 ${V} _{text {on}}$ 条件下${V} _{text {on}}$时,${E} 。EGSSA LIGBT 的 ${E} _{text {off}}$ 为 0.10mJ/cm2,比 Conv.LIGBT 低 96%。此外,与 SSA LIGBT 相比,所提出的器件还实现了更低的反向恢复电荷(${Q} _\text {rr}\text {)}$ 和更小的 RC 压降(${V} _\text {R}\text {)}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Low On-State Voltage Reverse-Conducting LIGBT With an Electron-Controlled Gate
A novel Reverse-Conducting Lateral Insulated Gate Bipolar Transistor (RC-LIGBT) is proposed and investigated in this letter for the first time, which features the Electron-controlled Gate (EG) and Separated Short-Anode (SSA), named as EGSSA LIGBT. The EG structure is made up of two p-n junctions and is connected to the gate and anode of the device. In the on-state, EG is clamped at a high gate potential. Thus, a high-density electron channel to the anode is formed on the surface of the drift region, which greatly reduces the on-state voltage drop ( ${V} _{\text {on}}\text {)}$ of EGSSA LIGBT. Meanwhile, based on the EG structure, a low-doping p-drift can be used, which forms an inverse p-n junction with the $\text {n} ^{+}$ anode. Therefore, it requires only a small additional area to eliminate the snapback voltage and achieve the RC characteristic. In addition, the turn-off loss ( ${E} _{\text {off}}\text {)}$ of EGSSA LIGBT is optimized by using a short-circuit anode. As simulation results show, EGSSA LIGBT achieves an extremely small V on of 1.03V, which is 42% and 65% lower than that of Conv. LIGBT and SSA LIGBT at the same ${E} _{\text {off}}$ . And at the same ${V} _{\text {on}}$ , the ${E} _{\text {off}}$ of EGSSA LIGBT is 0.10mJ/cm 2 , 96% lower than that of Conv. LIGBT. What’s more, the proposed device also achieves lower reverse recovery charge ( ${Q} _{\text {rr}}\text {)}$ and smaller RC voltage drop ( ${V} _{\text {R}}\text {)}$ than SSA LIGBT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Table of Contents Front Cover IEEE Electron Device Letters Publication Information IEEE Electron Device Letters Information for Authors Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1