用不同的遗传算法和有限元模拟耦合方法优化复合材料层压板的工艺诱导残余应力

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Journal of Composite Materials Pub Date : 2024-07-31 DOI:10.1177/00219983241268895
Hong Ma, Robert S Pierce, Justine Beauson
{"title":"用不同的遗传算法和有限元模拟耦合方法优化复合材料层压板的工艺诱导残余应力","authors":"Hong Ma, Robert S Pierce, Justine Beauson","doi":"10.1177/00219983241268895","DOIUrl":null,"url":null,"abstract":"To address the residual stress induced during the cure of fibre reinforced thermoset polymer composites, two different approaches were suggested for coupling a non-dominated sorting genetic algorithm (NSGA-II) with finite element (FE) simulations based on a viscoelastic constitutive law. These two approaches were proposed with consideration of different ways of integrating NSGA-II and the FE model. In Approach A, NSGA-II was performed based on results from a series of simulations under various combinations of cure variables. Alternatively, Approach B employed NSGA-II to iteratively update and optimise the cure profile for subsequent simulations. Results indicated that both approaches achieved simultaneous reductions in cure time and macroscale residual stress, with Approach B showing further improvements due to the direct coupling between the NSGA-II and simulations. Specifically, the maximum residual stress and cure time optimised by Approach A were reduced by 5%–9% and 22%–50% respectively, while those obtained by Approach B were reduced by 7%–10% and 32%–49% respectively, compared to those based on the manufacturer recommended cure profile. The evolution of stress in composites based on optimised cure profiles from these two approaches was also elucidated. Additionally, microscale modelling further revealed a 3%–5% reduction in the average residual stress within a representative volume element (RVE) model was also shown, depending upon the approach adopted. Ultimately, by combining a NSGA-II and FE simulations, the optimisation of cure time and residual stress at the macroscale and cure time together with a reduction of microscale stress could be realised.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"262 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of process-induced residual stresses in composite laminates by different genetic algorithm and finite element simulation coupling methods\",\"authors\":\"Hong Ma, Robert S Pierce, Justine Beauson\",\"doi\":\"10.1177/00219983241268895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the residual stress induced during the cure of fibre reinforced thermoset polymer composites, two different approaches were suggested for coupling a non-dominated sorting genetic algorithm (NSGA-II) with finite element (FE) simulations based on a viscoelastic constitutive law. These two approaches were proposed with consideration of different ways of integrating NSGA-II and the FE model. In Approach A, NSGA-II was performed based on results from a series of simulations under various combinations of cure variables. Alternatively, Approach B employed NSGA-II to iteratively update and optimise the cure profile for subsequent simulations. Results indicated that both approaches achieved simultaneous reductions in cure time and macroscale residual stress, with Approach B showing further improvements due to the direct coupling between the NSGA-II and simulations. Specifically, the maximum residual stress and cure time optimised by Approach A were reduced by 5%–9% and 22%–50% respectively, while those obtained by Approach B were reduced by 7%–10% and 32%–49% respectively, compared to those based on the manufacturer recommended cure profile. The evolution of stress in composites based on optimised cure profiles from these two approaches was also elucidated. Additionally, microscale modelling further revealed a 3%–5% reduction in the average residual stress within a representative volume element (RVE) model was also shown, depending upon the approach adopted. Ultimately, by combining a NSGA-II and FE simulations, the optimisation of cure time and residual stress at the macroscale and cure time together with a reduction of microscale stress could be realised.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"262 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241268895\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241268895","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

为解决纤维增强热固性聚合物复合材料固化过程中引起的残余应力问题,建议采用两种不同的方法,将非优势排序遗传算法(NSGA-II)与基于粘弹性结构定律的有限元(FE)模拟相结合。提出这两种方法时,考虑了将 NSGA-II 与有限元模型相结合的不同方式。在方法 A 中,NSGA-II 是根据在各种固化变量组合下的一系列模拟结果来执行的。另外,方法 B 采用 NSGA-II 来迭代更新和优化后续模拟的固化曲线。结果表明,这两种方法都能同时减少固化时间和宏观残余应力,而方法 B 则由于 NSGA-II 与模拟之间的直接耦合而有了进一步的改进。具体来说,与制造商推荐的固化曲线相比,方法 A 优化的最大残余应力和固化时间分别减少了 5%-9%和 22%-50%,而方法 B 获得的最大残余应力和固化时间分别减少了 7%-10%和 32%-49%。根据这两种方法优化的固化曲线,复合材料的应力演变也得到了阐明。此外,微观建模进一步显示,根据所采用的方法,代表性体积元素(RVE)模型内的平均残余应力也降低了 3%-5%。最终,通过将 NSGA-II 和 FE 模拟相结合,可以优化宏观尺度的固化时间和残余应力,并在减少微观应力的同时缩短固化时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimisation of process-induced residual stresses in composite laminates by different genetic algorithm and finite element simulation coupling methods
To address the residual stress induced during the cure of fibre reinforced thermoset polymer composites, two different approaches were suggested for coupling a non-dominated sorting genetic algorithm (NSGA-II) with finite element (FE) simulations based on a viscoelastic constitutive law. These two approaches were proposed with consideration of different ways of integrating NSGA-II and the FE model. In Approach A, NSGA-II was performed based on results from a series of simulations under various combinations of cure variables. Alternatively, Approach B employed NSGA-II to iteratively update and optimise the cure profile for subsequent simulations. Results indicated that both approaches achieved simultaneous reductions in cure time and macroscale residual stress, with Approach B showing further improvements due to the direct coupling between the NSGA-II and simulations. Specifically, the maximum residual stress and cure time optimised by Approach A were reduced by 5%–9% and 22%–50% respectively, while those obtained by Approach B were reduced by 7%–10% and 32%–49% respectively, compared to those based on the manufacturer recommended cure profile. The evolution of stress in composites based on optimised cure profiles from these two approaches was also elucidated. Additionally, microscale modelling further revealed a 3%–5% reduction in the average residual stress within a representative volume element (RVE) model was also shown, depending upon the approach adopted. Ultimately, by combining a NSGA-II and FE simulations, the optimisation of cure time and residual stress at the macroscale and cure time together with a reduction of microscale stress could be realised.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Micromechanics-based multi-scale framework with strain-rate effects for the simulation of ballistic impact on composite laminates Recycling catfish bone for additive manufacturing of silicone composite structures Mechanical performances of unsatured polyester composite reinforced by OleaEuropea var. Sylvestris fibers: Characterization, modeling and optimization of fiber textural properties Elastic properties identification of a bio-based material in tertiary packaging: Tools and methods development Parametric process optimisation of automated fibre placement (AFP) based AS4/APC-2 composites for mode I and mode II fracture toughness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1