通过数字图像处理和机器学习检测切碎碳纤维增强聚合物复合材料中的碳纤维

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Journal of Composite Materials Pub Date : 2024-07-30 DOI:10.1177/00219983241268861
Norbert Geier, Gergely Magyar, Jakob Giner, Tamás Lukács, György Póka
{"title":"通过数字图像处理和机器学习检测切碎碳纤维增强聚合物复合材料中的碳纤维","authors":"Norbert Geier, Gergely Magyar, Jakob Giner, Tamás Lukács, György Póka","doi":"10.1177/00219983241268861","DOIUrl":null,"url":null,"abstract":"Mechanical and thermodynamical properties and thus machinability of carbon fibre reinforced polymer composites significantly depend on the fibre orientation relative to the load direction. However, the orientations of the fibre groups in polymer composites reinforced by chopped carbon fibres are stochastic; therefore, the properties and machinability of such composites are challenging to plan, predict and optimise. We developed four different and novel approaches for fibre detection in polymer composites reinforced by chopped carbon fibres: (i) detecting the fibres through naked eye supported manual drawing, (ii) digital image processing of optical images, (iii) machine learning-based fibre detection, and (iv) rectangle fitting on the outputs of the automated processes using the Chaudhuri and Samal method. The applicability of the novel approaches was tested through optically captured images of polymer composites reinforced by chopped carbon fibres. The developed methods are each capable of detecting fibre groups at the top and bottom of the composite plate with certain limitations. The rectangle fitting approaches performed the best from the point of view of correctly identifying of fibre groups, followed by the machine learning-based and the conventional digital image processed, respectively. As a result of this study, the machining process planning and condition monitoring of polymer composites reinforced by chopped carbon fibres is more deeply supported.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"25 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon fibre detection in polymer composites reinforced by chopped carbon fibres through digital image processing and machine learning\",\"authors\":\"Norbert Geier, Gergely Magyar, Jakob Giner, Tamás Lukács, György Póka\",\"doi\":\"10.1177/00219983241268861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical and thermodynamical properties and thus machinability of carbon fibre reinforced polymer composites significantly depend on the fibre orientation relative to the load direction. However, the orientations of the fibre groups in polymer composites reinforced by chopped carbon fibres are stochastic; therefore, the properties and machinability of such composites are challenging to plan, predict and optimise. We developed four different and novel approaches for fibre detection in polymer composites reinforced by chopped carbon fibres: (i) detecting the fibres through naked eye supported manual drawing, (ii) digital image processing of optical images, (iii) machine learning-based fibre detection, and (iv) rectangle fitting on the outputs of the automated processes using the Chaudhuri and Samal method. The applicability of the novel approaches was tested through optically captured images of polymer composites reinforced by chopped carbon fibres. The developed methods are each capable of detecting fibre groups at the top and bottom of the composite plate with certain limitations. The rectangle fitting approaches performed the best from the point of view of correctly identifying of fibre groups, followed by the machine learning-based and the conventional digital image processed, respectively. As a result of this study, the machining process planning and condition monitoring of polymer composites reinforced by chopped carbon fibres is more deeply supported.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241268861\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241268861","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维增强聚合物复合材料的机械性能和热力学性能以及加工性能在很大程度上取决于纤维相对于载荷方向的取向。然而,切碎碳纤维增强聚合物复合材料中纤维组的取向是随机的;因此,规划、预测和优化此类复合材料的性能和可加工性具有挑战性。我们开发了四种不同的新型方法,用于检测用切碎碳纤维增强的聚合物复合材料中的纤维:(i) 通过肉眼检测纤维,支持手工绘图;(ii) 光学图像的数字图像处理;(iii) 基于机器学习的纤维检测;(iv) 使用 Chaudhuri 和 Samal 方法对自动化流程的输出进行矩形拟合。通过光学捕捉到的切碎碳纤维增强聚合物复合材料图像,测试了这些新方法的适用性。所开发的方法都能检测到复合板顶部和底部的纤维组,但有一定的局限性。从正确识别纤维组的角度来看,矩形拟合方法的效果最好,其次分别是基于机器学习的方法和传统的数字图像处理方法。这项研究为切碎碳纤维增强聚合物复合材料的加工工艺规划和状态监测提供了更深入的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon fibre detection in polymer composites reinforced by chopped carbon fibres through digital image processing and machine learning
Mechanical and thermodynamical properties and thus machinability of carbon fibre reinforced polymer composites significantly depend on the fibre orientation relative to the load direction. However, the orientations of the fibre groups in polymer composites reinforced by chopped carbon fibres are stochastic; therefore, the properties and machinability of such composites are challenging to plan, predict and optimise. We developed four different and novel approaches for fibre detection in polymer composites reinforced by chopped carbon fibres: (i) detecting the fibres through naked eye supported manual drawing, (ii) digital image processing of optical images, (iii) machine learning-based fibre detection, and (iv) rectangle fitting on the outputs of the automated processes using the Chaudhuri and Samal method. The applicability of the novel approaches was tested through optically captured images of polymer composites reinforced by chopped carbon fibres. The developed methods are each capable of detecting fibre groups at the top and bottom of the composite plate with certain limitations. The rectangle fitting approaches performed the best from the point of view of correctly identifying of fibre groups, followed by the machine learning-based and the conventional digital image processed, respectively. As a result of this study, the machining process planning and condition monitoring of polymer composites reinforced by chopped carbon fibres is more deeply supported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composite Materials
Journal of Composite Materials 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.90%
发文量
274
审稿时长
6.8 months
期刊介绍: Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Micromechanics-based multi-scale framework with strain-rate effects for the simulation of ballistic impact on composite laminates Recycling catfish bone for additive manufacturing of silicone composite structures Mechanical performances of unsatured polyester composite reinforced by OleaEuropea var. Sylvestris fibers: Characterization, modeling and optimization of fiber textural properties Elastic properties identification of a bio-based material in tertiary packaging: Tools and methods development Parametric process optimisation of automated fibre placement (AFP) based AS4/APC-2 composites for mode I and mode II fracture toughness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1