利用小波散射变换揭示万有引力的大尺度性质

Georgios Valogiannis, Francisco Villaescusa-Navarro, Marco Baldi
{"title":"利用小波散射变换揭示万有引力的大尺度性质","authors":"Georgios Valogiannis, Francisco Villaescusa-Navarro, Marco Baldi","doi":"arxiv-2407.18647","DOIUrl":null,"url":null,"abstract":"We present the first application of the Wavelet Scattering Transform (WST) in\norder to constrain the nature of gravity using the three-dimensional (3D)\nlarge-scale structure of the universe. Utilizing the Quijote-MG N-body\nsimulations, we can reliably model the 3D matter overdensity field for the f(R)\nHu-Sawicki modified gravity (MG) model down to $k_{\\rm max}=0.5$ h/Mpc.\nCombining these simulations with the Quijote $\\nu$CDM collection, we then\nconduct a Fisher forecast of the marginalized constraints obtained on gravity\nusing the WST coefficients and the matter power spectrum at redshift z=0. Our\nresults demonstrate that the WST substantially improves upon the 1$\\sigma$\nerror obtained on the parameter that captures deviations from standard General\nRelativity (GR), yielding a tenfold improvement compared to the corresponding\nmatter power spectrum result. At the same time, the WST also enhances the\nprecision on the $\\Lambda$CDM parameters and the sum of neutrino masses, by\nfactors of 1.2-3.4 compared to the matter power spectrum, respectively. Despite\nthe overall reduction in the WST performance when we focus on larger scales, it\nstill provides a relatively $4.5\\times$ tighter 1$\\sigma$ error for the MG\nparameter at $k_{\\rm max}=0.2$ h/Mpc, highlighting its great sensitivity to the\nunderlying gravity theory. This first proof-of-concept study reaffirms the\nconstraining properties of the WST technique and paves the way for exciting\nfuture applications in order to perform precise large-scale tests of gravity\nwith the new generation of cutting-edge cosmological data.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards unveiling the large-scale nature of gravity with the wavelet scattering transform\",\"authors\":\"Georgios Valogiannis, Francisco Villaescusa-Navarro, Marco Baldi\",\"doi\":\"arxiv-2407.18647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first application of the Wavelet Scattering Transform (WST) in\\norder to constrain the nature of gravity using the three-dimensional (3D)\\nlarge-scale structure of the universe. Utilizing the Quijote-MG N-body\\nsimulations, we can reliably model the 3D matter overdensity field for the f(R)\\nHu-Sawicki modified gravity (MG) model down to $k_{\\\\rm max}=0.5$ h/Mpc.\\nCombining these simulations with the Quijote $\\\\nu$CDM collection, we then\\nconduct a Fisher forecast of the marginalized constraints obtained on gravity\\nusing the WST coefficients and the matter power spectrum at redshift z=0. Our\\nresults demonstrate that the WST substantially improves upon the 1$\\\\sigma$\\nerror obtained on the parameter that captures deviations from standard General\\nRelativity (GR), yielding a tenfold improvement compared to the corresponding\\nmatter power spectrum result. At the same time, the WST also enhances the\\nprecision on the $\\\\Lambda$CDM parameters and the sum of neutrino masses, by\\nfactors of 1.2-3.4 compared to the matter power spectrum, respectively. Despite\\nthe overall reduction in the WST performance when we focus on larger scales, it\\nstill provides a relatively $4.5\\\\times$ tighter 1$\\\\sigma$ error for the MG\\nparameter at $k_{\\\\rm max}=0.2$ h/Mpc, highlighting its great sensitivity to the\\nunderlying gravity theory. This first proof-of-concept study reaffirms the\\nconstraining properties of the WST technique and paves the way for exciting\\nfuture applications in order to perform precise large-scale tests of gravity\\nwith the new generation of cutting-edge cosmological data.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们首次应用小波散射变换(WST),利用宇宙的三维(3D)大尺度结构来约束引力的性质。利用Quijote-MG N-bodysimulations,我们可以可靠地模拟f(R)Hu-Sawicki修正引力(MG)模型的三维物质超密度场,最小可达$k_{\rm max}=0.5$ h/Mpc.将这些模拟与Quijote $\nu$CDM 集合相结合,我们就可以利用WST系数和红移z=0时的物质功率谱对引力的边际约束进行费雪预测。我们的结果表明,在捕捉偏离标准广义相对论(GR)的参数上,WST大大改善了1$\sigma$的误差,与相应的物质功率谱结果相比,WST改善了10倍。与此同时,WST还提高了$\Lambda$CDM参数和中微子质量总和的精度,与物质功率谱相比分别提高了1.2-3.4倍。尽管当我们聚焦于更大尺度时,WST的整体性能有所下降,但它仍然在$k_{\rm max}=0.2$ h/Mpc时为MG参数提供了相对较小的4.5/times$ 1$\sigma$误差,突出了它对基础引力理论的极大敏感性。这项首次概念验证研究再次证实了WST技术的约束特性,并为今后的应用铺平了道路,以便利用新一代尖端宇宙学数据对引力进行精确的大尺度检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards unveiling the large-scale nature of gravity with the wavelet scattering transform
We present the first application of the Wavelet Scattering Transform (WST) in order to constrain the nature of gravity using the three-dimensional (3D) large-scale structure of the universe. Utilizing the Quijote-MG N-body simulations, we can reliably model the 3D matter overdensity field for the f(R) Hu-Sawicki modified gravity (MG) model down to $k_{\rm max}=0.5$ h/Mpc. Combining these simulations with the Quijote $\nu$CDM collection, we then conduct a Fisher forecast of the marginalized constraints obtained on gravity using the WST coefficients and the matter power spectrum at redshift z=0. Our results demonstrate that the WST substantially improves upon the 1$\sigma$ error obtained on the parameter that captures deviations from standard General Relativity (GR), yielding a tenfold improvement compared to the corresponding matter power spectrum result. At the same time, the WST also enhances the precision on the $\Lambda$CDM parameters and the sum of neutrino masses, by factors of 1.2-3.4 compared to the matter power spectrum, respectively. Despite the overall reduction in the WST performance when we focus on larger scales, it still provides a relatively $4.5\times$ tighter 1$\sigma$ error for the MG parameter at $k_{\rm max}=0.2$ h/Mpc, highlighting its great sensitivity to the underlying gravity theory. This first proof-of-concept study reaffirms the constraining properties of the WST technique and paves the way for exciting future applications in order to perform precise large-scale tests of gravity with the new generation of cutting-edge cosmological data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1