{"title":"用深共晶溶剂电解牛皮纸木质素","authors":"Esra Ceylan, Berrin Gürler-Akyüz, Rıfat Kurt, Ayhan Gencer, Mehmet Akyüz, Ayben Kilic-Pekgözlü","doi":"10.1007/s00226-024-01582-x","DOIUrl":null,"url":null,"abstract":"<div><p>The paper production industry annually produces approximately 50 million tons of lignin, an intermediate product. While lignin has the potential for producing valuable chemicals and energy materials, an effective method for its conversion is yet to be developed. This study aims to establish a sustainable and environmentally friendly approach for electrochemically synthesizing valuable compounds from lignin with using natural deep eutectic solvents as electrolytes. The study used cyclic voltammetry (CV) for the electrochemical depolymerization of Kraft lignin, examining the effects of different scan numbers on depolymerization and the resulting lignin derivatives. Observed changes in the depolymerization peak current of lignin were reported as the number of scans increased. Choline chloride: Lactic acid (CC:LA), Choline chloride: Ethylene glycol (CC:EG), and Lactic acid:1,2-propanediol (LA:PR) were used as green electrolytes. Syringaldehyde was found to be the major compound obtained by this method. As a result of statistical analysis performed using The Grey Relations Analysis method, it was determined that the conditions that utilized Kraft lignin with the highest added value involved performing five cycles of CV scans with the CC:LA electrolyte. CV scans in DES environments increased the yield of lignin-derived phenolic compounds.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 5-6","pages":"1645 - 1662"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01582-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Electro-depolymerization of Kraft lignin with deep eutectic solvents\",\"authors\":\"Esra Ceylan, Berrin Gürler-Akyüz, Rıfat Kurt, Ayhan Gencer, Mehmet Akyüz, Ayben Kilic-Pekgözlü\",\"doi\":\"10.1007/s00226-024-01582-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper production industry annually produces approximately 50 million tons of lignin, an intermediate product. While lignin has the potential for producing valuable chemicals and energy materials, an effective method for its conversion is yet to be developed. This study aims to establish a sustainable and environmentally friendly approach for electrochemically synthesizing valuable compounds from lignin with using natural deep eutectic solvents as electrolytes. The study used cyclic voltammetry (CV) for the electrochemical depolymerization of Kraft lignin, examining the effects of different scan numbers on depolymerization and the resulting lignin derivatives. Observed changes in the depolymerization peak current of lignin were reported as the number of scans increased. Choline chloride: Lactic acid (CC:LA), Choline chloride: Ethylene glycol (CC:EG), and Lactic acid:1,2-propanediol (LA:PR) were used as green electrolytes. Syringaldehyde was found to be the major compound obtained by this method. As a result of statistical analysis performed using The Grey Relations Analysis method, it was determined that the conditions that utilized Kraft lignin with the highest added value involved performing five cycles of CV scans with the CC:LA electrolyte. CV scans in DES environments increased the yield of lignin-derived phenolic compounds.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"58 5-6\",\"pages\":\"1645 - 1662\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00226-024-01582-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01582-x\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01582-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Electro-depolymerization of Kraft lignin with deep eutectic solvents
The paper production industry annually produces approximately 50 million tons of lignin, an intermediate product. While lignin has the potential for producing valuable chemicals and energy materials, an effective method for its conversion is yet to be developed. This study aims to establish a sustainable and environmentally friendly approach for electrochemically synthesizing valuable compounds from lignin with using natural deep eutectic solvents as electrolytes. The study used cyclic voltammetry (CV) for the electrochemical depolymerization of Kraft lignin, examining the effects of different scan numbers on depolymerization and the resulting lignin derivatives. Observed changes in the depolymerization peak current of lignin were reported as the number of scans increased. Choline chloride: Lactic acid (CC:LA), Choline chloride: Ethylene glycol (CC:EG), and Lactic acid:1,2-propanediol (LA:PR) were used as green electrolytes. Syringaldehyde was found to be the major compound obtained by this method. As a result of statistical analysis performed using The Grey Relations Analysis method, it was determined that the conditions that utilized Kraft lignin with the highest added value involved performing five cycles of CV scans with the CC:LA electrolyte. CV scans in DES environments increased the yield of lignin-derived phenolic compounds.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.