Robert Kleinhans, Manuel Pintore, Patricia Erhard, Ralph Renz, Johanna Tesfu
{"title":"用于轻金属铸造的 3D 打印模具的热性能","authors":"Robert Kleinhans, Manuel Pintore, Patricia Erhard, Ralph Renz, Johanna Tesfu","doi":"10.1007/s40962-024-01411-8","DOIUrl":null,"url":null,"abstract":"<p>Binder Jetting technology is well established for the production of sand molds and cores for foundry use, owing to its flexibility and expansive design capabilities. A wide array of sand, aggregate, and binder combinations is commercially available. Utilizing these types of refractory materials in the casting process presents both technical and economic benefits and drawbacks. For intricate cast components, foundry technologists must assess the thermophysical properties of the mold material systems. With this knowledge, specialized high-performance material combinations may be employed in specific areas of the mold, while more economically viable systems are used for shaping the external mold support. This study primarily focuses on determining the heat capacity and thermal diffusivity and consequently the thermal conductivity using a specially developed analytical method. It investigates three different fundamental aggregates: silica, cerabeads<sup>®</sup>, and chromite. The result’s range provides an overview of relevant characteristics for the selected material systems. Given that the properties of sand affect heat flow during casting and solidification, these newly determined values can be utilized in future simulations. Consequently, these findings aid in maintaining and enhancing the quality of critically stressed cast parts.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"199 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Properties of 3D-Printed Molds for Light Metal Casting\",\"authors\":\"Robert Kleinhans, Manuel Pintore, Patricia Erhard, Ralph Renz, Johanna Tesfu\",\"doi\":\"10.1007/s40962-024-01411-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Binder Jetting technology is well established for the production of sand molds and cores for foundry use, owing to its flexibility and expansive design capabilities. A wide array of sand, aggregate, and binder combinations is commercially available. Utilizing these types of refractory materials in the casting process presents both technical and economic benefits and drawbacks. For intricate cast components, foundry technologists must assess the thermophysical properties of the mold material systems. With this knowledge, specialized high-performance material combinations may be employed in specific areas of the mold, while more economically viable systems are used for shaping the external mold support. This study primarily focuses on determining the heat capacity and thermal diffusivity and consequently the thermal conductivity using a specially developed analytical method. It investigates three different fundamental aggregates: silica, cerabeads<sup>®</sup>, and chromite. The result’s range provides an overview of relevant characteristics for the selected material systems. Given that the properties of sand affect heat flow during casting and solidification, these newly determined values can be utilized in future simulations. Consequently, these findings aid in maintaining and enhancing the quality of critically stressed cast parts.</p>\",\"PeriodicalId\":14231,\"journal\":{\"name\":\"International Journal of Metalcasting\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metalcasting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40962-024-01411-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01411-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Thermal Properties of 3D-Printed Molds for Light Metal Casting
Binder Jetting technology is well established for the production of sand molds and cores for foundry use, owing to its flexibility and expansive design capabilities. A wide array of sand, aggregate, and binder combinations is commercially available. Utilizing these types of refractory materials in the casting process presents both technical and economic benefits and drawbacks. For intricate cast components, foundry technologists must assess the thermophysical properties of the mold material systems. With this knowledge, specialized high-performance material combinations may be employed in specific areas of the mold, while more economically viable systems are used for shaping the external mold support. This study primarily focuses on determining the heat capacity and thermal diffusivity and consequently the thermal conductivity using a specially developed analytical method. It investigates three different fundamental aggregates: silica, cerabeads®, and chromite. The result’s range provides an overview of relevant characteristics for the selected material systems. Given that the properties of sand affect heat flow during casting and solidification, these newly determined values can be utilized in future simulations. Consequently, these findings aid in maintaining and enhancing the quality of critically stressed cast parts.
期刊介绍:
The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).