AttnACQ:基于自动相关性的超维关联记忆查询

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems II: Express Briefs Pub Date : 2024-07-29 DOI:10.1109/TCSII.2024.3434562
Tianyang Yu;Bi Wu;Ke Chen;Gong Zhang;Weiqiang Liu
{"title":"AttnACQ:基于自动相关性的超维关联记忆查询","authors":"Tianyang Yu;Bi Wu;Ke Chen;Gong Zhang;Weiqiang Liu","doi":"10.1109/TCSII.2024.3434562","DOIUrl":null,"url":null,"abstract":"The low power and latency of hyperdimensional associative memory (HAM) promotes hyperdimensional computing (HDC)’s efficiency. However, overheads of HAM can be hardly further reduced, since HAM needs to store all class hypervectors, and complete the similarity calculation between them and the input sample hypervector. To address this issue, an attentioned-autocorrelation based query method called AttnACQ is proposed to avoid the storage and operations corresponding to class hypervectors. Furthermore, levearging SOT-MRAM’s ultra-low read/write delay, a high-efficient HAM matching to AttnACQ is proposed. Experiments show that this AttnACQ boosted HAM saves more than 95% area and 50% latency.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"71 12","pages":"4984-4988"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AttnACQ: Attentioned-AutoCorrelation-Based Query for Hyperdimensional Associative Memory\",\"authors\":\"Tianyang Yu;Bi Wu;Ke Chen;Gong Zhang;Weiqiang Liu\",\"doi\":\"10.1109/TCSII.2024.3434562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The low power and latency of hyperdimensional associative memory (HAM) promotes hyperdimensional computing (HDC)’s efficiency. However, overheads of HAM can be hardly further reduced, since HAM needs to store all class hypervectors, and complete the similarity calculation between them and the input sample hypervector. To address this issue, an attentioned-autocorrelation based query method called AttnACQ is proposed to avoid the storage and operations corresponding to class hypervectors. Furthermore, levearging SOT-MRAM’s ultra-low read/write delay, a high-efficient HAM matching to AttnACQ is proposed. Experiments show that this AttnACQ boosted HAM saves more than 95% area and 50% latency.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"71 12\",\"pages\":\"4984-4988\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10612822/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10612822/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

超维关联内存(HAM)的低功耗和低延迟提高了超维计算(HDC)的效率。然而,由于 HAM 需要存储所有类超向量,并完成它们与输入样本超向量之间的相似性计算,因此很难进一步降低 HAM 的开销。为了解决这个问题,我们提出了一种名为 AttnACQ 的基于关注-自相关的查询方法,以避免类超向量的存储和操作。此外,利用 SOT-MRAM 的超低读写延迟,提出了一种与 AttnACQ 匹配的高效 HAM。实验表明,这种 AttnACQ 增强型 HAM 可节省 95% 以上的面积和 50% 的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AttnACQ: Attentioned-AutoCorrelation-Based Query for Hyperdimensional Associative Memory
The low power and latency of hyperdimensional associative memory (HAM) promotes hyperdimensional computing (HDC)’s efficiency. However, overheads of HAM can be hardly further reduced, since HAM needs to store all class hypervectors, and complete the similarity calculation between them and the input sample hypervector. To address this issue, an attentioned-autocorrelation based query method called AttnACQ is proposed to avoid the storage and operations corresponding to class hypervectors. Furthermore, levearging SOT-MRAM’s ultra-low read/write delay, a high-efficient HAM matching to AttnACQ is proposed. Experiments show that this AttnACQ boosted HAM saves more than 95% area and 50% latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
期刊最新文献
Table of Contents IEEE Transactions on Circuits and Systems--II: Express Briefs Publication Information Table of Contents Guest Editorial Special Issue on the 2024 ISICAS: A CAS Journal Track Symposium IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1