Bin Chen, Junjie Xia, Yiwei Lu, Geping Zhang, Qinghua Liu, Jieming Hu, Zijian Han
{"title":"基于颗粒破碎的钙质砂力链演变特征","authors":"Bin Chen, Junjie Xia, Yiwei Lu, Geping Zhang, Qinghua Liu, Jieming Hu, Zijian Han","doi":"10.1515/arh-2024-0009","DOIUrl":null,"url":null,"abstract":"Calcareous sand is easily broken under external force, which brings great difficulties to island reef engineering. Based on the particle flow program, a discrete element model that can reproduce the results of laboratory tests is established, the large principal stress method is introduced to identify the particle force chain, and the bond strength between particles is increased to obtain an unbreakable model with the same initial conditions, and different confining pressures are compared and analyzed. The evolution law of the force chain of the following two models establishes a macro-meso cross-scale analysis in the deformation process of calcareous sand, explores the internal mechanism of the crushing of calcareous sand particles. The results show that particle breakage plays an important role in the evolution of the force chain. Particle breakage will reduce the probability of the force chain on both sides of the axis, forcing the probability of the axial force chain to rise steadily. The macroscopic deviatoric stress is the external manifestation of the probability of the axial force chain on the meso level. The faster the probability of the force chain in the direction of the potential shear band increases, the more obvious the shear band is.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":"96 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution characteristics of calcareous sand force chain based on particle breakage\",\"authors\":\"Bin Chen, Junjie Xia, Yiwei Lu, Geping Zhang, Qinghua Liu, Jieming Hu, Zijian Han\",\"doi\":\"10.1515/arh-2024-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calcareous sand is easily broken under external force, which brings great difficulties to island reef engineering. Based on the particle flow program, a discrete element model that can reproduce the results of laboratory tests is established, the large principal stress method is introduced to identify the particle force chain, and the bond strength between particles is increased to obtain an unbreakable model with the same initial conditions, and different confining pressures are compared and analyzed. The evolution law of the force chain of the following two models establishes a macro-meso cross-scale analysis in the deformation process of calcareous sand, explores the internal mechanism of the crushing of calcareous sand particles. The results show that particle breakage plays an important role in the evolution of the force chain. Particle breakage will reduce the probability of the force chain on both sides of the axis, forcing the probability of the axial force chain to rise steadily. The macroscopic deviatoric stress is the external manifestation of the probability of the axial force chain on the meso level. The faster the probability of the force chain in the direction of the potential shear band increases, the more obvious the shear band is.\",\"PeriodicalId\":50738,\"journal\":{\"name\":\"Applied Rheology\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/arh-2024-0009\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/arh-2024-0009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Evolution characteristics of calcareous sand force chain based on particle breakage
Calcareous sand is easily broken under external force, which brings great difficulties to island reef engineering. Based on the particle flow program, a discrete element model that can reproduce the results of laboratory tests is established, the large principal stress method is introduced to identify the particle force chain, and the bond strength between particles is increased to obtain an unbreakable model with the same initial conditions, and different confining pressures are compared and analyzed. The evolution law of the force chain of the following two models establishes a macro-meso cross-scale analysis in the deformation process of calcareous sand, explores the internal mechanism of the crushing of calcareous sand particles. The results show that particle breakage plays an important role in the evolution of the force chain. Particle breakage will reduce the probability of the force chain on both sides of the axis, forcing the probability of the axial force chain to rise steadily. The macroscopic deviatoric stress is the external manifestation of the probability of the axial force chain on the meso level. The faster the probability of the force chain in the direction of the potential shear band increases, the more obvious the shear band is.
期刊介绍:
Applied Rheology is a peer-reviewed, open access, electronic journal devoted to the publication in the field of applied rheology. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.