喷射混合法苯乙烯聚合热失控抑制的 CFD 模拟研究

IF 1.8 4区 工程技术 Q3 Chemical Engineering Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-07-29 DOI:10.1002/apj.3129
Jiajia Jiang, Yating Chen, Rui Zhou, Guanrong Mao
{"title":"喷射混合法苯乙烯聚合热失控抑制的 CFD 模拟研究","authors":"Jiajia Jiang, Yating Chen, Rui Zhou, Guanrong Mao","doi":"10.1002/apj.3129","DOIUrl":null,"url":null,"abstract":"Thermal runaway of polymerization reactions causes serious accidents. To study the emergency inhibition process of thermal runaway, a styrene thermal polymerization reaction model is established by using computational fluid dynamics (CFD) combined with a thermodynamic model. The DIV critical criterion is used to determine the critical point of the runaway reaction. The inhibitory effect of injection diameter, injection rate, and injection angle of inhibitor (ethylbenzene) on the styrene polymerization reaction is studied comprehensively. The injection mixing trajectory of the inhibitor is visualized by using the Lagrangian particle tracking method. The injection parameters are optimized to suppress thermal runaway by the response surface method. The result shows that a combination of injection parameters with 2 mm injection port diameter, 5 m/s injection rate, and 90° injection angle can improve the suppression effect of thermal runaway for the established model in this paper. This work provides a theoretical basis for preventing thermal runaway for polymerization reactions.","PeriodicalId":8852,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"45 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD simulation study of thermal runaway inhibition for styrene polymerization by jet mixing\",\"authors\":\"Jiajia Jiang, Yating Chen, Rui Zhou, Guanrong Mao\",\"doi\":\"10.1002/apj.3129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal runaway of polymerization reactions causes serious accidents. To study the emergency inhibition process of thermal runaway, a styrene thermal polymerization reaction model is established by using computational fluid dynamics (CFD) combined with a thermodynamic model. The DIV critical criterion is used to determine the critical point of the runaway reaction. The inhibitory effect of injection diameter, injection rate, and injection angle of inhibitor (ethylbenzene) on the styrene polymerization reaction is studied comprehensively. The injection mixing trajectory of the inhibitor is visualized by using the Lagrangian particle tracking method. The injection parameters are optimized to suppress thermal runaway by the response surface method. The result shows that a combination of injection parameters with 2 mm injection port diameter, 5 m/s injection rate, and 90° injection angle can improve the suppression effect of thermal runaway for the established model in this paper. This work provides a theoretical basis for preventing thermal runaway for polymerization reactions.\",\"PeriodicalId\":8852,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/apj.3129\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/apj.3129","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

聚合反应的热失控会导致严重事故。为了研究热失控的紧急抑制过程,利用计算流体动力学(CFD)结合热力学模型建立了苯乙烯热聚合反应模型。采用 DIV 临界准则确定失控反应的临界点。全面研究了抑制剂(乙苯)的注入直径、注入速率和注入角度对苯乙烯聚合反应的抑制作用。采用拉格朗日粒子跟踪方法对抑制剂的注入混合轨迹进行了可视化分析。采用响应面法优化了注入参数,以抑制热失控。结果表明,在本文建立的模型中,喷射口直径为 2 毫米、喷射速度为 5 米/秒、喷射角度为 90°的喷射参数组合可以提高抑制热失控的效果。这项工作为防止聚合反应热失控提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFD simulation study of thermal runaway inhibition for styrene polymerization by jet mixing
Thermal runaway of polymerization reactions causes serious accidents. To study the emergency inhibition process of thermal runaway, a styrene thermal polymerization reaction model is established by using computational fluid dynamics (CFD) combined with a thermodynamic model. The DIV critical criterion is used to determine the critical point of the runaway reaction. The inhibitory effect of injection diameter, injection rate, and injection angle of inhibitor (ethylbenzene) on the styrene polymerization reaction is studied comprehensively. The injection mixing trajectory of the inhibitor is visualized by using the Lagrangian particle tracking method. The injection parameters are optimized to suppress thermal runaway by the response surface method. The result shows that a combination of injection parameters with 2 mm injection port diameter, 5 m/s injection rate, and 90° injection angle can improve the suppression effect of thermal runaway for the established model in this paper. This work provides a theoretical basis for preventing thermal runaway for polymerization reactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Chemical Engineering
Asia-Pacific Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.50
自引率
11.10%
发文量
111
审稿时长
2.8 months
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
期刊最新文献
Efficient activation of N and S co-doped magnetic biochar for peroxomonosulfate degradation of tetracycline Sulfonated carbon–based heterogeneous acid catalysts in direct biomass redox flow fuel cell: A review Enhanced peroxidase‐like activity of MnFe2O4 nanoparticles on halloysite nanotubes for uric acid detection CO2 capture for environmental remediation with hollow fibre membrane: Impact of air gap and bore fluid ratio onto the morphology and performance An insight into the investigation of partition characteristics of flow fields based on chaos fractal theory in a jet impingement–negative‐pressure reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1