Dr. Sung Youn Suh, Marco Giannico, Dr. Clara Maria Watermann, Dr.-Ing. Barbara Zeidler-Fandrich
{"title":"利用实验设计法优化 CoMo/γ-Al2O3 催化脱氧的工艺参数","authors":"Dr. Sung Youn Suh, Marco Giannico, Dr. Clara Maria Watermann, Dr.-Ing. Barbara Zeidler-Fandrich","doi":"10.1002/cite.202400025","DOIUrl":null,"url":null,"abstract":"<p>Catalytic oxygen removal applying a commercial CoMo-based catalyst has attracted scientific attention owing to its catalytic stability towards poisoning components and cost-effectiveness. The catalytic performance of the CoMo catalyst was investigated using statistical optimization techniques. The H<sub>2</sub>S concentrations in the sulfidation and reaction mixture are the key factors regulating the optimal values of deoxygenation reaction. The sulfidation process is a key step to generate the active species. The catalyst remains active in the presence of sulfur compounds in the reaction mixture, which is poisoning for other catalyst systems. An increase in the H<sub>2</sub>S content enhances the catalytic activity via in-situ sulfidation within the meaning of regeneration during the reaction. Concentrations above 450 ppm H<sub>2</sub>S in the reaction mixture result in a nearly complete oxygen conversion and ensure the catalytic stability. At the same time, an increase in the H<sub>2</sub>S content favors a high sulfidation degree resulting in the formation of active sites.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 9","pages":"1230-1236"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400025","citationCount":"0","resultStr":"{\"title\":\"Optimization of the Process Parameters of Catalytic Oxygen Removal over CoMo/γ-Al2O3 Using Design-of-Experiment Approaches\",\"authors\":\"Dr. Sung Youn Suh, Marco Giannico, Dr. Clara Maria Watermann, Dr.-Ing. Barbara Zeidler-Fandrich\",\"doi\":\"10.1002/cite.202400025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Catalytic oxygen removal applying a commercial CoMo-based catalyst has attracted scientific attention owing to its catalytic stability towards poisoning components and cost-effectiveness. The catalytic performance of the CoMo catalyst was investigated using statistical optimization techniques. The H<sub>2</sub>S concentrations in the sulfidation and reaction mixture are the key factors regulating the optimal values of deoxygenation reaction. The sulfidation process is a key step to generate the active species. The catalyst remains active in the presence of sulfur compounds in the reaction mixture, which is poisoning for other catalyst systems. An increase in the H<sub>2</sub>S content enhances the catalytic activity via in-situ sulfidation within the meaning of regeneration during the reaction. Concentrations above 450 ppm H<sub>2</sub>S in the reaction mixture result in a nearly complete oxygen conversion and ensure the catalytic stability. At the same time, an increase in the H<sub>2</sub>S content favors a high sulfidation degree resulting in the formation of active sites.</p>\",\"PeriodicalId\":9912,\"journal\":{\"name\":\"Chemie Ingenieur Technik\",\"volume\":\"96 9\",\"pages\":\"1230-1236\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400025\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Ingenieur Technik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Ingenieur Technik","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cite.202400025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
由于对中毒成分的催化稳定性和成本效益,使用商用 CoMo 催化剂进行催化脱氧引起了科学界的关注。本文采用统计优化技术研究了 CoMo 催化剂的催化性能。硫化和反应混合物中的 H2S 浓度是调节脱氧反应最佳值的关键因素。硫化过程是生成活性物种的关键步骤。在反应混合物中存在硫化合物的情况下,催化剂仍能保持活性,而这对其他催化剂系统来说是一种毒害。H2S 含量的增加可在反应过程中通过原位硫化再生提高催化活性。反应混合物中的 H2S 浓度超过 450 ppm 时,氧转化几乎完全完成,并能确保催化剂的稳定性。同时,H2S 含量的增加有利于形成高硫化程度的活性位点。
Optimization of the Process Parameters of Catalytic Oxygen Removal over CoMo/γ-Al2O3 Using Design-of-Experiment Approaches
Catalytic oxygen removal applying a commercial CoMo-based catalyst has attracted scientific attention owing to its catalytic stability towards poisoning components and cost-effectiveness. The catalytic performance of the CoMo catalyst was investigated using statistical optimization techniques. The H2S concentrations in the sulfidation and reaction mixture are the key factors regulating the optimal values of deoxygenation reaction. The sulfidation process is a key step to generate the active species. The catalyst remains active in the presence of sulfur compounds in the reaction mixture, which is poisoning for other catalyst systems. An increase in the H2S content enhances the catalytic activity via in-situ sulfidation within the meaning of regeneration during the reaction. Concentrations above 450 ppm H2S in the reaction mixture result in a nearly complete oxygen conversion and ensure the catalytic stability. At the same time, an increase in the H2S content favors a high sulfidation degree resulting in the formation of active sites.
期刊介绍:
Die Chemie Ingenieur Technik ist die wohl angesehenste deutschsprachige Zeitschrift für Verfahrensingenieure, technische Chemiker, Apparatebauer und Biotechnologen. Als Fachorgan von DECHEMA, GDCh und VDI-GVC gilt sie als das unverzichtbare Forum für den Erfahrungsaustausch zwischen Forschern und Anwendern aus Industrie, Forschung und Entwicklung. Wissenschaftlicher Fortschritt und Praxisnähe: Eine Kombination, die es nur in der CIT gibt!