{"title":"通过调节纤维尺寸优化高性能锂金属电池纤维素基分离器的结构","authors":"Zhenghao Li, Zongtao Lu, Tianyou Zhang, Bingsen Qin, Wei Yan, Li Dong, Jie Dong, Chunxiang Ma, Zhiping Chen, Wei Li, Yun Zheng, Jiujun Zhang","doi":"10.1002/batt.202400435","DOIUrl":null,"url":null,"abstract":"<p>Cellulose-based separator exhibits excellent electrolyte affinity, thermal stability, and mechanical strength, which acts as a promising alternative to commercial polyolefin separators in lithium metal batteries (LMBs). Fiber size in cellulose-based separators plays a crucial role in determining their physicochemical structure and mechanical strength, as well as the electrochemical performance of corresponding LMBs. Herein, the fiber size in cellulose-based separators was first time regulated to optimize their mechanical stability and the related battery performance. The influences of fiber size in the separator on chemical structure, mechanical properties, surface morphology, electrochemical behavior were investigated in detail, in which the underlying mechanism between separator structure and the related performance was elucidated. As a result, the separator optimized by fiber size regulation exhibited excellent thermal stability under 180 °C, good tensile strengths of 6.0 MPa and Young's moduli of 315.9 MPa, superior room temperature ionic conductivity of 1.87 mS cm<sup>−1</sup>, as well as significantly improved electrochemical performance of corresponding batteries. It can be concluded that structure optimization for cellulose-based separator through fiber size regulation is an effective and indispensable approach towards high safety and high performance LMBs.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 12","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure Optimization for Cellulose-Based Separator through Fiber Size Regulation for High Performance Lithium Metal Batteries\",\"authors\":\"Zhenghao Li, Zongtao Lu, Tianyou Zhang, Bingsen Qin, Wei Yan, Li Dong, Jie Dong, Chunxiang Ma, Zhiping Chen, Wei Li, Yun Zheng, Jiujun Zhang\",\"doi\":\"10.1002/batt.202400435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellulose-based separator exhibits excellent electrolyte affinity, thermal stability, and mechanical strength, which acts as a promising alternative to commercial polyolefin separators in lithium metal batteries (LMBs). Fiber size in cellulose-based separators plays a crucial role in determining their physicochemical structure and mechanical strength, as well as the electrochemical performance of corresponding LMBs. Herein, the fiber size in cellulose-based separators was first time regulated to optimize their mechanical stability and the related battery performance. The influences of fiber size in the separator on chemical structure, mechanical properties, surface morphology, electrochemical behavior were investigated in detail, in which the underlying mechanism between separator structure and the related performance was elucidated. As a result, the separator optimized by fiber size regulation exhibited excellent thermal stability under 180 °C, good tensile strengths of 6.0 MPa and Young's moduli of 315.9 MPa, superior room temperature ionic conductivity of 1.87 mS cm<sup>−1</sup>, as well as significantly improved electrochemical performance of corresponding batteries. It can be concluded that structure optimization for cellulose-based separator through fiber size regulation is an effective and indispensable approach towards high safety and high performance LMBs.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"7 12\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400435\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400435","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
纤维素基隔膜具有优异的电解质亲和性、热稳定性和机械强度,有望成为锂金属电池(LMB)中商用聚烯烃隔膜的替代品。纤维素基隔膜中的纤维尺寸对其物理化学结构和机械强度以及相应锂金属电池的电化学性能起着至关重要的作用。本文首次对纤维素基隔膜中的纤维尺寸进行了调节,以优化其机械稳定性和相关的电池性能。详细研究了隔膜中纤维尺寸对化学结构、机械性能、表面形貌和电化学行为的影响,阐明了隔膜结构与相关性能之间的内在机理。结果表明,通过调节纤维尺寸优化的隔膜在 180 °C 下具有优异的热稳定性,拉伸强度达到 6.0 MPa,杨氏模量达到 315.9 MPa,室温离子电导率达到 1.87 mS cm-1,相应电池的电化学性能也得到显著提高。由此可见,通过调节纤维尺寸来优化纤维素基隔膜的结构,是实现高安全性和高性能 LMB 不可或缺的有效方法。
Structure Optimization for Cellulose-Based Separator through Fiber Size Regulation for High Performance Lithium Metal Batteries
Cellulose-based separator exhibits excellent electrolyte affinity, thermal stability, and mechanical strength, which acts as a promising alternative to commercial polyolefin separators in lithium metal batteries (LMBs). Fiber size in cellulose-based separators plays a crucial role in determining their physicochemical structure and mechanical strength, as well as the electrochemical performance of corresponding LMBs. Herein, the fiber size in cellulose-based separators was first time regulated to optimize their mechanical stability and the related battery performance. The influences of fiber size in the separator on chemical structure, mechanical properties, surface morphology, electrochemical behavior were investigated in detail, in which the underlying mechanism between separator structure and the related performance was elucidated. As a result, the separator optimized by fiber size regulation exhibited excellent thermal stability under 180 °C, good tensile strengths of 6.0 MPa and Young's moduli of 315.9 MPa, superior room temperature ionic conductivity of 1.87 mS cm−1, as well as significantly improved electrochemical performance of corresponding batteries. It can be concluded that structure optimization for cellulose-based separator through fiber size regulation is an effective and indispensable approach towards high safety and high performance LMBs.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.