窄带隙钴取代 BiFeO3 自旋涂层薄膜的杰出铁电特性

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-07-29 DOI:10.1007/s10971-024-06443-4
Jing Zhang, Jian-Qing Dai, Guang-Cheng Zhang, Xin-Jian Zhu
{"title":"窄带隙钴取代 BiFeO3 自旋涂层薄膜的杰出铁电特性","authors":"Jing Zhang, Jian-Qing Dai, Guang-Cheng Zhang, Xin-Jian Zhu","doi":"10.1007/s10971-024-06443-4","DOIUrl":null,"url":null,"abstract":"<p>Thin films of BiFe<sub>1−<i>x</i></sub>Co<sub><i>x</i></sub>O<sub>3</sub> (BFCO, <i>x</i> = 0–0.05) were prepared using the sol–gel method and deposited on a fluorine-doped tin oxide (FTO)/glass substrate. The crystal structure, surface morphology, dielectric properties, polarization, and optical characteristics of the BFCO thin films were investigated. X-ray diffraction (XRD) and Raman spectroscopy analyses show that Co doping induces lattice distortion. Scanning electron microscopy (SEM) images demonstrate that BFCO films with <i>x</i> = 0.03 possess uniform fine grains, which are crucial for their ferroelectric properties. From XPS pattern, it can be observed that Co doping can inhibit the conversion of Fe<sup>3+</sup> into Fe<sup>2+</sup>, and BiFe<sub>0.97</sub>Co<sub>0.03</sub>O<sub>3</sub> films exhibit greatly reduced oxygen vacancy concentration. Therefore, BiFe<sub>0.97</sub>Co<sub>0.03</sub>O<sub>3</sub> film was found to have the lowest leakage current density (<i>J</i> = 7.18 × 10<sup>−7</sup> A/cm<sup>2</sup>). The film demonstrates outstanding residual polarization at room temperature, with a value of <i>P</i><sub>r</sub> = 152.1 μC/cm<sup>2</sup>, more than twice the magnitude of that in pure BFO (<i>P</i><sub>r</sub> = 72.33 μC/cm<sup>2</sup>). Moreover, the dielectric properties of BFCO films show a significant improvement when compared to those of pure BFO samples. This enhancement is attributed to the Co doping-induced structural transition, along with a reduction in grain size and a decrease in the concentration of oxygen vacancies. Additionally, the BiFe<sub>0.97</sub>Co<sub>0.03</sub>O<sub>3</sub> film exhibits a narrower band gap (<i>E</i><sub>g</sub> = 1.69 eV) in comparison to the BFO film (<i>E</i><sub>g</sub> = 1.87 eV). Consequently, an expansion in the range of photovoltaic applications for BFO films can be achieved.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outstanding ferroelectric properties in the narrow bandgap cobalt-substituted BiFeO3 spin-coated films\",\"authors\":\"Jing Zhang, Jian-Qing Dai, Guang-Cheng Zhang, Xin-Jian Zhu\",\"doi\":\"10.1007/s10971-024-06443-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thin films of BiFe<sub>1−<i>x</i></sub>Co<sub><i>x</i></sub>O<sub>3</sub> (BFCO, <i>x</i> = 0–0.05) were prepared using the sol–gel method and deposited on a fluorine-doped tin oxide (FTO)/glass substrate. The crystal structure, surface morphology, dielectric properties, polarization, and optical characteristics of the BFCO thin films were investigated. X-ray diffraction (XRD) and Raman spectroscopy analyses show that Co doping induces lattice distortion. Scanning electron microscopy (SEM) images demonstrate that BFCO films with <i>x</i> = 0.03 possess uniform fine grains, which are crucial for their ferroelectric properties. From XPS pattern, it can be observed that Co doping can inhibit the conversion of Fe<sup>3+</sup> into Fe<sup>2+</sup>, and BiFe<sub>0.97</sub>Co<sub>0.03</sub>O<sub>3</sub> films exhibit greatly reduced oxygen vacancy concentration. Therefore, BiFe<sub>0.97</sub>Co<sub>0.03</sub>O<sub>3</sub> film was found to have the lowest leakage current density (<i>J</i> = 7.18 × 10<sup>−7</sup> A/cm<sup>2</sup>). The film demonstrates outstanding residual polarization at room temperature, with a value of <i>P</i><sub>r</sub> = 152.1 μC/cm<sup>2</sup>, more than twice the magnitude of that in pure BFO (<i>P</i><sub>r</sub> = 72.33 μC/cm<sup>2</sup>). Moreover, the dielectric properties of BFCO films show a significant improvement when compared to those of pure BFO samples. This enhancement is attributed to the Co doping-induced structural transition, along with a reduction in grain size and a decrease in the concentration of oxygen vacancies. Additionally, the BiFe<sub>0.97</sub>Co<sub>0.03</sub>O<sub>3</sub> film exhibits a narrower band gap (<i>E</i><sub>g</sub> = 1.69 eV) in comparison to the BFO film (<i>E</i><sub>g</sub> = 1.87 eV). Consequently, an expansion in the range of photovoltaic applications for BFO films can be achieved.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s10971-024-06443-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10971-024-06443-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

采用溶胶-凝胶法制备了 BiFe1-xCoxO3 (BFCO,x = 0-0.05)薄膜,并将其沉积在掺氟氧化锡(FTO)/玻璃基底上。研究了 BFCO 薄膜的晶体结构、表面形貌、介电性质、极化和光学特性。X 射线衍射 (XRD) 和拉曼光谱分析表明,钴掺杂会导致晶格畸变。扫描电子显微镜(SEM)图像表明,x = 0.03 的 BFCO 薄膜具有均匀的细晶粒,这对其铁电特性至关重要。从 XPS 图可以看出,掺入 Co 可以抑制 Fe3+ 向 Fe2+ 的转化,BiFe0.97Co0.03O3 薄膜的氧空位浓度大大降低。因此,BiFe0.97Co0.03O3 薄膜的漏电流密度(J = 7.18 × 10-7 A/cm2)最低。该薄膜在室温下具有出色的残余极化性能,Pr = 152.1 μC/cm2,是纯 BFO(Pr = 72.33 μC/cm2)的两倍多。此外,与纯 BFO 样品相比,BFCO 薄膜的介电性能有显著改善。这种改善归因于 Co 掺杂引起的结构转变,以及晶粒尺寸的减小和氧空位浓度的降低。此外,与 BFO 薄膜(Eg = 1.87 eV)相比,BiFe0.97Co0.03O3 薄膜的带隙更窄(Eg = 1.69 eV)。因此,可以扩大 BFO 薄膜的光伏应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Outstanding ferroelectric properties in the narrow bandgap cobalt-substituted BiFeO3 spin-coated films

Thin films of BiFe1−xCoxO3 (BFCO, x = 0–0.05) were prepared using the sol–gel method and deposited on a fluorine-doped tin oxide (FTO)/glass substrate. The crystal structure, surface morphology, dielectric properties, polarization, and optical characteristics of the BFCO thin films were investigated. X-ray diffraction (XRD) and Raman spectroscopy analyses show that Co doping induces lattice distortion. Scanning electron microscopy (SEM) images demonstrate that BFCO films with x = 0.03 possess uniform fine grains, which are crucial for their ferroelectric properties. From XPS pattern, it can be observed that Co doping can inhibit the conversion of Fe3+ into Fe2+, and BiFe0.97Co0.03O3 films exhibit greatly reduced oxygen vacancy concentration. Therefore, BiFe0.97Co0.03O3 film was found to have the lowest leakage current density (J = 7.18 × 10−7 A/cm2). The film demonstrates outstanding residual polarization at room temperature, with a value of Pr = 152.1 μC/cm2, more than twice the magnitude of that in pure BFO (Pr = 72.33 μC/cm2). Moreover, the dielectric properties of BFCO films show a significant improvement when compared to those of pure BFO samples. This enhancement is attributed to the Co doping-induced structural transition, along with a reduction in grain size and a decrease in the concentration of oxygen vacancies. Additionally, the BiFe0.97Co0.03O3 film exhibits a narrower band gap (Eg = 1.69 eV) in comparison to the BFO film (Eg = 1.87 eV). Consequently, an expansion in the range of photovoltaic applications for BFO films can be achieved.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Phase structure evolution and electric properties of PSN-PIN-PT ferroelectric ceramics near MPB The impact of aluminum oxide deposition on the high-temperature resistance of silica aerogels Investigating structural, dielectric, and electrical characteristics of sol–gel synthesized perovskite ceramic Bi0.7Ba0.3(FeTi)0.5O3 Quasi-in-situ characterization and laser damage investigation of flaws in silica antireflection coatings Effect of synthesis time on the photocatalytic performance of aggregated CuBO₂ microstructures for photo induced hazardous dye removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1