Awen Bruneau, François Mahé, Christophe Binetruy, Sébastien Comas-Cardona, Charlotte Landry, Nelly Durand
{"title":"应用于热塑性复合材料回收工艺的包装模拟和分析","authors":"Awen Bruneau, François Mahé, Christophe Binetruy, Sébastien Comas-Cardona, Charlotte Landry, Nelly Durand","doi":"10.3389/fmats.2024.1420014","DOIUrl":null,"url":null,"abstract":"A numerical model of packing applied to rigid objects is presented. It aims at describing a random stack of polymer composite chips in order to model the packing step of an existing recycling technique. The geometric properties of the stack play a major role in the mechanical properties of the recycled products. Short, simple and effective geometric descriptors of the stack are proposed. Their ability to differentiate random stacks is illustrated with an example. Then, a validation is proposed based on experimental data obtained from a bench specially designed for this work. The tests consist in the free fall of square chips. Finally, the developed model is compared to other models (free fall and packing of fibers) in order to enforce its relevance in the simulation of packing of rigid objects.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":"50 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Packing simulation and analysis applied to a thermoplastic composite recycling process\",\"authors\":\"Awen Bruneau, François Mahé, Christophe Binetruy, Sébastien Comas-Cardona, Charlotte Landry, Nelly Durand\",\"doi\":\"10.3389/fmats.2024.1420014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical model of packing applied to rigid objects is presented. It aims at describing a random stack of polymer composite chips in order to model the packing step of an existing recycling technique. The geometric properties of the stack play a major role in the mechanical properties of the recycled products. Short, simple and effective geometric descriptors of the stack are proposed. Their ability to differentiate random stacks is illustrated with an example. Then, a validation is proposed based on experimental data obtained from a bench specially designed for this work. The tests consist in the free fall of square chips. Finally, the developed model is compared to other models (free fall and packing of fibers) in order to enforce its relevance in the simulation of packing of rigid objects.\",\"PeriodicalId\":12524,\"journal\":{\"name\":\"Frontiers in Materials\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3389/fmats.2024.1420014\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3389/fmats.2024.1420014","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Packing simulation and analysis applied to a thermoplastic composite recycling process
A numerical model of packing applied to rigid objects is presented. It aims at describing a random stack of polymer composite chips in order to model the packing step of an existing recycling technique. The geometric properties of the stack play a major role in the mechanical properties of the recycled products. Short, simple and effective geometric descriptors of the stack are proposed. Their ability to differentiate random stacks is illustrated with an example. Then, a validation is proposed based on experimental data obtained from a bench specially designed for this work. The tests consist in the free fall of square chips. Finally, the developed model is compared to other models (free fall and packing of fibers) in order to enforce its relevance in the simulation of packing of rigid objects.
期刊介绍:
Frontiers in Materials is a high visibility journal publishing rigorously peer-reviewed research across the entire breadth of materials science and engineering. This interdisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers across academia and industry, and the public worldwide.
Founded upon a research community driven approach, this Journal provides a balanced and comprehensive offering of Specialty Sections, each of which has a dedicated Editorial Board of leading experts in the respective field.