Pui-Wai Ma, Daniel R. Mason, Steven Van Boxel, Sergei L. Dudarev
{"title":"高辐射照射下的纳米结晶钨","authors":"Pui-Wai Ma, Daniel R. Mason, Steven Van Boxel, Sergei L. Dudarev","doi":"10.1103/physrevmaterials.8.083601","DOIUrl":null,"url":null,"abstract":"Evolution of nanocrystalline (NC) tungsten under radiation exposure is investigated by atomic scale simulations in the low temperature high dose limit. Statistical analysis of samples containing at least a million atoms, with grain size varying from 5 nm to 20 nm, shows that the pattern of microstructural evolution of a NC material differs significantly from that of a single crystal. The high resistance to swelling in the low grain size limit stems from a combined effect of the initial excess volume of atomic configurations at grain boundaries and high integral volume of grain boundary defect-denuded zones. Grain boundaries annihilate defects through the rearrangement of their local atomic configurations acting as fluctuating dynamic sinks for defects. Grain size distribution slowly broadens as a function of dose, delaying the onset of an asymptotic radiation-driven steady state in comparison with a single crystalline material. Spatial limitations imposed by the size and topology of grains prevent the formation of a percolating dislocation network, resulting in only isolated dislocation loops being retained in the microstructure even at high radiation exposure.","PeriodicalId":20545,"journal":{"name":"Physical Review Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocrystalline tungsten at high radiation exposure\",\"authors\":\"Pui-Wai Ma, Daniel R. Mason, Steven Van Boxel, Sergei L. Dudarev\",\"doi\":\"10.1103/physrevmaterials.8.083601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolution of nanocrystalline (NC) tungsten under radiation exposure is investigated by atomic scale simulations in the low temperature high dose limit. Statistical analysis of samples containing at least a million atoms, with grain size varying from 5 nm to 20 nm, shows that the pattern of microstructural evolution of a NC material differs significantly from that of a single crystal. The high resistance to swelling in the low grain size limit stems from a combined effect of the initial excess volume of atomic configurations at grain boundaries and high integral volume of grain boundary defect-denuded zones. Grain boundaries annihilate defects through the rearrangement of their local atomic configurations acting as fluctuating dynamic sinks for defects. Grain size distribution slowly broadens as a function of dose, delaying the onset of an asymptotic radiation-driven steady state in comparison with a single crystalline material. Spatial limitations imposed by the size and topology of grains prevent the formation of a percolating dislocation network, resulting in only isolated dislocation loops being retained in the microstructure even at high radiation exposure.\",\"PeriodicalId\":20545,\"journal\":{\"name\":\"Physical Review Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevmaterials.8.083601\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1103/physrevmaterials.8.083601","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanocrystalline tungsten at high radiation exposure
Evolution of nanocrystalline (NC) tungsten under radiation exposure is investigated by atomic scale simulations in the low temperature high dose limit. Statistical analysis of samples containing at least a million atoms, with grain size varying from 5 nm to 20 nm, shows that the pattern of microstructural evolution of a NC material differs significantly from that of a single crystal. The high resistance to swelling in the low grain size limit stems from a combined effect of the initial excess volume of atomic configurations at grain boundaries and high integral volume of grain boundary defect-denuded zones. Grain boundaries annihilate defects through the rearrangement of their local atomic configurations acting as fluctuating dynamic sinks for defects. Grain size distribution slowly broadens as a function of dose, delaying the onset of an asymptotic radiation-driven steady state in comparison with a single crystalline material. Spatial limitations imposed by the size and topology of grains prevent the formation of a percolating dislocation network, resulting in only isolated dislocation loops being retained in the microstructure even at high radiation exposure.
期刊介绍:
Physical Review Materials is a new broad-scope international journal for the multidisciplinary community engaged in research on materials. It is intended to fill a gap in the family of existing Physical Review journals that publish materials research. This field has grown rapidly in recent years and is increasingly being carried out in a way that transcends conventional subject boundaries. The journal was created to provide a common publication and reference source to the expanding community of physicists, materials scientists, chemists, engineers, and researchers in related disciplines that carry out high-quality original research in materials. It will share the same commitment to the high quality expected of all APS publications.