{"title":"基于语音清晰度的肢体瘫痪严重程度分类:混合方法","authors":"Vidya M., Ganesh Vaidyanathan S.","doi":"10.1007/s00034-024-02770-7","DOIUrl":null,"url":null,"abstract":"<p>The intelligibility of speech is a primary component to assess the severity level of Dysarthria, a speech disorder, which is caused not only due to weakness in vocal motor muscles but also difficulty in controlling its movements. Prior information about the severity of Dysarthria, aids the therapist during the rehabilitation process. This paper introduces a novel hybrid architecture comprising Gaussian Mixture Model and Neural Network (GMM-NN) for categorizing Dysarthric severity into four classes based on speech intelligibility. Mel Frequency Cepstral Coefficients (MFCC) extracted from the segmented speech signals are used to train the classifier. The proposed model produced a 1.9% improvement in accuracy when compared to the baseline Gaussian Mixture Model (GMM). The Gaussian Mixture Model Deep Neural Network (GMM-DNN) and Gaussian Mixture Model Feed Forward Neural Network (GMM-FFNN) architectures showed an accuracy of 96.7% and 96.42% with F1 scores of 0.9649, 0.9604 respectively.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":"143 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysarthric Severity Categorization Based on Speech Intelligibility: A Hybrid Approach\",\"authors\":\"Vidya M., Ganesh Vaidyanathan S.\",\"doi\":\"10.1007/s00034-024-02770-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The intelligibility of speech is a primary component to assess the severity level of Dysarthria, a speech disorder, which is caused not only due to weakness in vocal motor muscles but also difficulty in controlling its movements. Prior information about the severity of Dysarthria, aids the therapist during the rehabilitation process. This paper introduces a novel hybrid architecture comprising Gaussian Mixture Model and Neural Network (GMM-NN) for categorizing Dysarthric severity into four classes based on speech intelligibility. Mel Frequency Cepstral Coefficients (MFCC) extracted from the segmented speech signals are used to train the classifier. The proposed model produced a 1.9% improvement in accuracy when compared to the baseline Gaussian Mixture Model (GMM). The Gaussian Mixture Model Deep Neural Network (GMM-DNN) and Gaussian Mixture Model Feed Forward Neural Network (GMM-FFNN) architectures showed an accuracy of 96.7% and 96.42% with F1 scores of 0.9649, 0.9604 respectively.</p>\",\"PeriodicalId\":10227,\"journal\":{\"name\":\"Circuits, Systems and Signal Processing\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00034-024-02770-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02770-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dysarthric Severity Categorization Based on Speech Intelligibility: A Hybrid Approach
The intelligibility of speech is a primary component to assess the severity level of Dysarthria, a speech disorder, which is caused not only due to weakness in vocal motor muscles but also difficulty in controlling its movements. Prior information about the severity of Dysarthria, aids the therapist during the rehabilitation process. This paper introduces a novel hybrid architecture comprising Gaussian Mixture Model and Neural Network (GMM-NN) for categorizing Dysarthric severity into four classes based on speech intelligibility. Mel Frequency Cepstral Coefficients (MFCC) extracted from the segmented speech signals are used to train the classifier. The proposed model produced a 1.9% improvement in accuracy when compared to the baseline Gaussian Mixture Model (GMM). The Gaussian Mixture Model Deep Neural Network (GMM-DNN) and Gaussian Mixture Model Feed Forward Neural Network (GMM-FFNN) architectures showed an accuracy of 96.7% and 96.42% with F1 scores of 0.9649, 0.9604 respectively.
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.