非线性阈值控制单向耦合振荡器中的多频振荡

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Circuits, Systems and Signal Processing Pub Date : 2024-07-29 DOI:10.1007/s00034-024-02795-y
P. Yogamarish, I. Raja Mohamed
{"title":"非线性阈值控制单向耦合振荡器中的多频振荡","authors":"P. Yogamarish, I. Raja Mohamed","doi":"10.1007/s00034-024-02795-y","DOIUrl":null,"url":null,"abstract":"<p>This work presents an experimental realization of a ring scheme of nonlinear threshold controlled unidirectionally coupled (N = 3) second-order autonomous type oscillating systems. The originality of this work lies in having the threshold controller as the nonlinear element of the dynamical system and as the coupling element to form a ring circuit using these systems. The advantage of this coupling is getting tuning of frequency (multi-frequency) of the ring from a few hertz to kilohertz along with the observation of a periodic rotating wave pattern by varying one of the parameter values of the system, in terms of either changing the resistor value (gain) in the coupling path or changing the threshold value of the threshold controller or both. The results explored through this experimental study are confirmed by numerically simulated results, obtained using MATLAB coding- simulink and MULTISIM software. The symmetrical and asymmetrical aspects of the flexible threshold coupling are also studied and the observed interesting experimental and numerical results are presented.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":"49 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-frequency Oscillations in the Nonlinear Threshold Controlled Unidirectionally Coupled Oscillators\",\"authors\":\"P. Yogamarish, I. Raja Mohamed\",\"doi\":\"10.1007/s00034-024-02795-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents an experimental realization of a ring scheme of nonlinear threshold controlled unidirectionally coupled (N = 3) second-order autonomous type oscillating systems. The originality of this work lies in having the threshold controller as the nonlinear element of the dynamical system and as the coupling element to form a ring circuit using these systems. The advantage of this coupling is getting tuning of frequency (multi-frequency) of the ring from a few hertz to kilohertz along with the observation of a periodic rotating wave pattern by varying one of the parameter values of the system, in terms of either changing the resistor value (gain) in the coupling path or changing the threshold value of the threshold controller or both. The results explored through this experimental study are confirmed by numerically simulated results, obtained using MATLAB coding- simulink and MULTISIM software. The symmetrical and asymmetrical aspects of the flexible threshold coupling are also studied and the observed interesting experimental and numerical results are presented.</p>\",\"PeriodicalId\":10227,\"journal\":{\"name\":\"Circuits, Systems and Signal Processing\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00034-024-02795-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02795-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过实验实现了非线性阈值控制单向耦合(N = 3)二阶自主型振荡系统的环形方案。这项工作的独创性在于将阈值控制器作为动态系统的非线性元素和耦合元素,利用这些系统形成环形电路。这种耦合的优势在于,通过改变系统的一个参数值,即改变耦合路径中的电阻值(增益)或改变阈值控制器的阈值,或同时改变这两个参数值,就能调整环的频率(多频),频率范围从几赫兹到几千赫兹,同时还能观察到周期性的旋转波形。使用 MATLAB 编码--simulink 和 MULTISIM 软件获得的数值模拟结果证实了本实验研究的结果。此外,还对柔性阈值耦合的对称和不对称方面进行了研究,并展示了观察到的有趣的实验和数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-frequency Oscillations in the Nonlinear Threshold Controlled Unidirectionally Coupled Oscillators

This work presents an experimental realization of a ring scheme of nonlinear threshold controlled unidirectionally coupled (N = 3) second-order autonomous type oscillating systems. The originality of this work lies in having the threshold controller as the nonlinear element of the dynamical system and as the coupling element to form a ring circuit using these systems. The advantage of this coupling is getting tuning of frequency (multi-frequency) of the ring from a few hertz to kilohertz along with the observation of a periodic rotating wave pattern by varying one of the parameter values of the system, in terms of either changing the resistor value (gain) in the coupling path or changing the threshold value of the threshold controller or both. The results explored through this experimental study are confirmed by numerically simulated results, obtained using MATLAB coding- simulink and MULTISIM software. The symmetrical and asymmetrical aspects of the flexible threshold coupling are also studied and the observed interesting experimental and numerical results are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circuits, Systems and Signal Processing
Circuits, Systems and Signal Processing 工程技术-工程:电子与电气
CiteScore
4.80
自引率
13.00%
发文量
321
审稿时长
4.6 months
期刊介绍: Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area. The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing. The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published. Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.
期刊最新文献
Squeeze-and-Excitation Self-Attention Mechanism Enhanced Digital Audio Source Recognition Based on Transfer Learning Recursive Windowed Variational Mode Decomposition Discrete-Time Delta-Sigma Modulator with Successively Approximating Register ADC Assisted Analog Feedback Technique Individually Weighted Modified Logarithmic Hyperbolic Sine Curvelet Based Recursive FLN for Nonlinear System Identification Event-Triggered $$H_{\infty }$$ Filtering for A Class of Nonlinear Systems Under DoS Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1