Paul Smith, Ethan Bounds, Kaleb Jones, Anthony Griffin, Zoe Gunter, Zhe Qiang
{"title":"利用聚乙烯前体实现碳的 3D 打印","authors":"Paul Smith, Ethan Bounds, Kaleb Jones, Anthony Griffin, Zoe Gunter, Zhe Qiang","doi":"10.1557/s43579-024-00619-3","DOIUrl":null,"url":null,"abstract":"<p>Development of low-cost and accessible techniques for creating intricate carbon structures is an important research area for advancing various applications. In this work, fused filament fabrication (FFF) of polyethylene (PE) is used to generate 3D-printed structures which are converted to carbon through sulfonation-induced crosslinking and subsequent pyrolysis. Carbons from PE precursors display more continuous morphologies than their polypropylene (PP) counterparts while achieving enhanced reaction kinetics at lower temperatures. This phenomenon enables robust mechanical properties under optimal carbonization conditions. This work provides an essential expansion of precursor selection and understanding of carbonization effects for 3D-printed carbon materials.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"48 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling 3D printing of carbons by polyethylene precursors\",\"authors\":\"Paul Smith, Ethan Bounds, Kaleb Jones, Anthony Griffin, Zoe Gunter, Zhe Qiang\",\"doi\":\"10.1557/s43579-024-00619-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Development of low-cost and accessible techniques for creating intricate carbon structures is an important research area for advancing various applications. In this work, fused filament fabrication (FFF) of polyethylene (PE) is used to generate 3D-printed structures which are converted to carbon through sulfonation-induced crosslinking and subsequent pyrolysis. Carbons from PE precursors display more continuous morphologies than their polypropylene (PP) counterparts while achieving enhanced reaction kinetics at lower temperatures. This phenomenon enables robust mechanical properties under optimal carbonization conditions. This work provides an essential expansion of precursor selection and understanding of carbonization effects for 3D-printed carbon materials.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00619-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00619-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enabling 3D printing of carbons by polyethylene precursors
Development of low-cost and accessible techniques for creating intricate carbon structures is an important research area for advancing various applications. In this work, fused filament fabrication (FFF) of polyethylene (PE) is used to generate 3D-printed structures which are converted to carbon through sulfonation-induced crosslinking and subsequent pyrolysis. Carbons from PE precursors display more continuous morphologies than their polypropylene (PP) counterparts while achieving enhanced reaction kinetics at lower temperatures. This phenomenon enables robust mechanical properties under optimal carbonization conditions. This work provides an essential expansion of precursor selection and understanding of carbonization effects for 3D-printed carbon materials.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.