{"title":"放电发展初期低电感真空火花中的 XUV 等离子体发射动力学","authors":"P. S. Antsiferov, L. V. Stepanov, N. D. Matyukhin","doi":"10.1134/S1063780X24600610","DOIUrl":null,"url":null,"abstract":"<p>The emission dynamics of a vacuum spark with a peak current of ~50 kA in the wavelength range of λ = 5–40 nm is analyzed. The radiation was detected by means of the microchannel-plate detectors with a frame temporal resolution of 20 ns. The technique of simultaneous acquisition of the spatial distribution and spectrograms of plasma emission allowed resolving characteristic stages of discharge development. At the initial stage (200–300 ns), strong emission of multiply charged iron ions FeV–FeVIII is detected. This emission disappears later (300–400 ns) and reappears again after 400 ns. The possible role of runaway electrons in the described phenomenon is discussed. The found regime of the discharge can be used upon development of the radiation sources in the extreme UV range.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 6","pages":"742 - 748"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dynamics of XUV Plasma Emission in a Low-Inductance Vacuum Spark at the Initial Stage of Discharge Development\",\"authors\":\"P. S. Antsiferov, L. V. Stepanov, N. D. Matyukhin\",\"doi\":\"10.1134/S1063780X24600610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The emission dynamics of a vacuum spark with a peak current of ~50 kA in the wavelength range of λ = 5–40 nm is analyzed. The radiation was detected by means of the microchannel-plate detectors with a frame temporal resolution of 20 ns. The technique of simultaneous acquisition of the spatial distribution and spectrograms of plasma emission allowed resolving characteristic stages of discharge development. At the initial stage (200–300 ns), strong emission of multiply charged iron ions FeV–FeVIII is detected. This emission disappears later (300–400 ns) and reappears again after 400 ns. The possible role of runaway electrons in the described phenomenon is discussed. The found regime of the discharge can be used upon development of the radiation sources in the extreme UV range.</p>\",\"PeriodicalId\":735,\"journal\":{\"name\":\"Plasma Physics Reports\",\"volume\":\"50 6\",\"pages\":\"742 - 748\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063780X24600610\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X24600610","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
The Dynamics of XUV Plasma Emission in a Low-Inductance Vacuum Spark at the Initial Stage of Discharge Development
The emission dynamics of a vacuum spark with a peak current of ~50 kA in the wavelength range of λ = 5–40 nm is analyzed. The radiation was detected by means of the microchannel-plate detectors with a frame temporal resolution of 20 ns. The technique of simultaneous acquisition of the spatial distribution and spectrograms of plasma emission allowed resolving characteristic stages of discharge development. At the initial stage (200–300 ns), strong emission of multiply charged iron ions FeV–FeVIII is detected. This emission disappears later (300–400 ns) and reappears again after 400 ns. The possible role of runaway electrons in the described phenomenon is discussed. The found regime of the discharge can be used upon development of the radiation sources in the extreme UV range.
期刊介绍:
Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.