大西洋鲱鱼春季和秋季产卵幼体的生长:模拟季节性光照条件的长期实验

IF 2.2 3区 环境科学与生态学 Q2 ECOLOGY Marine Ecology Progress Series Pub Date : 2024-07-30 DOI:10.3354/meps14521
Florian Berg, Gaute Seljestad, Arild Folkvord
{"title":"大西洋鲱鱼春季和秋季产卵幼体的生长:模拟季节性光照条件的长期实验","authors":"Florian Berg, Gaute Seljestad, Arild Folkvord","doi":"10.3354/meps14521","DOIUrl":null,"url":null,"abstract":"ABSTRACT: Atlantic herring <i>Clupea harengus</i> populations differ in their spawning time, and spring- and autumn-spawning populations are genetically distinct. Offspring of these populations encounter seasonal variations in productivity. We conducted a fertilization experiment using spring-spawning Atlantic herring. Offspring were reared for 3 yr with seasonal varying light cycles starting either in spring or autumn, using 2 fixed temperature levels and food provided in excess. Such long-term experiments from hatching to maturation in small pelagic fish are very rare. We hypothesized that longer daylengths early in life would provide an overall growth advantage resulting in larger size after 1 yr (same amount of light) compared to those experiencing prolonged daylight later in life due to higher size-dependent growth rates at smaller sizes. Larvae with initial spring conditions initially grew faster. However, contrary to our expectations, offspring with initial autumn conditions had caught up to similar size after 1 yr. Herring at higher temperatures grew faster, even when correcting for the amount of degree-days. After the first year, individuals hatched in spring showed higher growth at the higher temperature while herring hatched under autumn light conditions consistently had higher growth rates at lower temperatures. The somatic condition of herring followed the daylength, with best conditions during summer and poorest during winter. This was the first long-term experiment conducted on herring with varying light conditions from hatching to maturation. Our novel results indicate that herring display considerable growth plasticity, reflecting the wide range of environmental conditions and life histories sustaining herring populations.","PeriodicalId":18193,"journal":{"name":"Marine Ecology Progress Series","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth of spring- and autumn-spawned larvae of Atlantic herring Clupea harengus: a long-term experiment mimicking seasonal light conditions\",\"authors\":\"Florian Berg, Gaute Seljestad, Arild Folkvord\",\"doi\":\"10.3354/meps14521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT: Atlantic herring <i>Clupea harengus</i> populations differ in their spawning time, and spring- and autumn-spawning populations are genetically distinct. Offspring of these populations encounter seasonal variations in productivity. We conducted a fertilization experiment using spring-spawning Atlantic herring. Offspring were reared for 3 yr with seasonal varying light cycles starting either in spring or autumn, using 2 fixed temperature levels and food provided in excess. Such long-term experiments from hatching to maturation in small pelagic fish are very rare. We hypothesized that longer daylengths early in life would provide an overall growth advantage resulting in larger size after 1 yr (same amount of light) compared to those experiencing prolonged daylight later in life due to higher size-dependent growth rates at smaller sizes. Larvae with initial spring conditions initially grew faster. However, contrary to our expectations, offspring with initial autumn conditions had caught up to similar size after 1 yr. Herring at higher temperatures grew faster, even when correcting for the amount of degree-days. After the first year, individuals hatched in spring showed higher growth at the higher temperature while herring hatched under autumn light conditions consistently had higher growth rates at lower temperatures. The somatic condition of herring followed the daylength, with best conditions during summer and poorest during winter. This was the first long-term experiment conducted on herring with varying light conditions from hatching to maturation. Our novel results indicate that herring display considerable growth plasticity, reflecting the wide range of environmental conditions and life histories sustaining herring populations.\",\"PeriodicalId\":18193,\"journal\":{\"name\":\"Marine Ecology Progress Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Ecology Progress Series\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3354/meps14521\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Ecology Progress Series","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/meps14521","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:大西洋鲱鱼(Clupea harengus)种群的产卵时间各不相同,春季和秋季产卵的种群在遗传上截然不同。这些种群的后代在生产力方面存在季节性差异。我们利用春季产卵的大西洋鲱鱼进行了受精实验。后代在春季或秋季开始的不同季节光照周期中饲养了 3 年,使用 2 种固定温度水平,并提供过量食物。这种小型中上层鱼类从孵化到成熟的长期实验非常罕见。我们假设,由于幼鱼在较小体型时的生长速度与体型有关,因此与那些在生命后期经历较长日照的幼鱼相比,生命早期较长的日照会提供整体生长优势,从而使幼鱼在 1 年后体型更大(相同的光照量)。在最初的春季条件下,幼虫最初的生长速度较快。然而,与我们的预期相反,初始条件为秋季的后代在 1 年后的体型已接近我们的预期。温度较高的鲱鱼生长速度更快,即使校正了度日数也是如此。第一年后,春季孵化的个体在较高温度下的生长速度较快,而在秋季光照条件下孵化的鲱鱼在较低温度下的生长速度一直较快。鲱鱼的体质随昼夜长短而变化,夏季体质最好,冬季体质最差。这是首次对鲱鱼进行的从孵化到成熟的不同光照条件下的长期实验。我们的新结果表明,鲱鱼的生长具有相当大的可塑性,这反映了鲱鱼种群所处的广泛环境条件和生活史。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growth of spring- and autumn-spawned larvae of Atlantic herring Clupea harengus: a long-term experiment mimicking seasonal light conditions
ABSTRACT: Atlantic herring Clupea harengus populations differ in their spawning time, and spring- and autumn-spawning populations are genetically distinct. Offspring of these populations encounter seasonal variations in productivity. We conducted a fertilization experiment using spring-spawning Atlantic herring. Offspring were reared for 3 yr with seasonal varying light cycles starting either in spring or autumn, using 2 fixed temperature levels and food provided in excess. Such long-term experiments from hatching to maturation in small pelagic fish are very rare. We hypothesized that longer daylengths early in life would provide an overall growth advantage resulting in larger size after 1 yr (same amount of light) compared to those experiencing prolonged daylight later in life due to higher size-dependent growth rates at smaller sizes. Larvae with initial spring conditions initially grew faster. However, contrary to our expectations, offspring with initial autumn conditions had caught up to similar size after 1 yr. Herring at higher temperatures grew faster, even when correcting for the amount of degree-days. After the first year, individuals hatched in spring showed higher growth at the higher temperature while herring hatched under autumn light conditions consistently had higher growth rates at lower temperatures. The somatic condition of herring followed the daylength, with best conditions during summer and poorest during winter. This was the first long-term experiment conducted on herring with varying light conditions from hatching to maturation. Our novel results indicate that herring display considerable growth plasticity, reflecting the wide range of environmental conditions and life histories sustaining herring populations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Ecology Progress Series
Marine Ecology Progress Series 环境科学-海洋学
CiteScore
5.30
自引率
8.00%
发文量
238
审稿时长
3 months
期刊介绍: The leading journal in its field, MEPS covers all aspects of marine ecology, fundamental and applied. Topics covered include microbiology, botany, zoology, ecosystem research, biological oceanography, ecological aspects of fisheries and aquaculture, pollution, environmental protection, conservation, and resource management.
期刊最新文献
Acartia tonsa grazing on the harmful dinoflagellate Dinophysis acuminata reduces copepod survival and increases extracellular toxin concentrations Phytoplankton community composition as a driver of annual autochthonous organic carbon dynamics in the northern coastal Baltic Sea Thermal priming of Saccharina latissima: a promising strategy to improve seaweed production and restoration in future climates Diet and size at birth affect larval rockfish condition and survival Habitat-mediated direct and indirect interactions in a marine sedimentary system from Atlantic Canada
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1