Vincent-Raphael Bourque, Zoe Schmilovich, Guillaume Huguet, Jade England, Adeniran Okewole, Cecile Poulain, Thomas Renne, Martineau Jean-Louis, Zohra Saci, Xinhe Zhang, Thomas Rolland, Aurelie Labbe, Jacob Vorstman, Guy Rouleau, Simon Baron-Cohen, Laurent Mottron, Richard A.I. Bethlehem, Varun Warrier, Sebastien Jacquemont
{"title":"整合基因组变异和发育里程碑,预测自闭症儿童的认知和适应结果","authors":"Vincent-Raphael Bourque, Zoe Schmilovich, Guillaume Huguet, Jade England, Adeniran Okewole, Cecile Poulain, Thomas Renne, Martineau Jean-Louis, Zohra Saci, Xinhe Zhang, Thomas Rolland, Aurelie Labbe, Jacob Vorstman, Guy Rouleau, Simon Baron-Cohen, Laurent Mottron, Richard A.I. Bethlehem, Varun Warrier, Sebastien Jacquemont","doi":"10.1101/2024.07.31.24311250","DOIUrl":null,"url":null,"abstract":"Although the first signs of autism are often observed as early as 18-36 months of age, there is a broad uncertainty regarding future development, and clinicians lack predictive tools to identify those who will later be diagnosed with co-occurring intellectual disability (ID). Here, we developed predictive models of ID in autistic children (n=5,633 from three cohorts), integrating different classes of genetic variants alongside developmental milestones. The integrated model yielded an AUC ROC=0.65, with this predictive performance cross-validated and generalised across cohorts. Positive predictive values reached up to 55%, accurately identifying 10% of ID cases. The ability to stratify the probabilities of ID using genetic variants was up to twofold greater in individuals with delayed milestones compared to those with typical development. These findings underscore the potential of models in neurodevelopmental medicine that integrate genomics and clinical observations to predict outcomes and target interventions.","PeriodicalId":501375,"journal":{"name":"medRxiv - Genetic and Genomic Medicine","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating genomic variants and developmental milestones to predict cognitive and adaptive outcomes in autistic children\",\"authors\":\"Vincent-Raphael Bourque, Zoe Schmilovich, Guillaume Huguet, Jade England, Adeniran Okewole, Cecile Poulain, Thomas Renne, Martineau Jean-Louis, Zohra Saci, Xinhe Zhang, Thomas Rolland, Aurelie Labbe, Jacob Vorstman, Guy Rouleau, Simon Baron-Cohen, Laurent Mottron, Richard A.I. Bethlehem, Varun Warrier, Sebastien Jacquemont\",\"doi\":\"10.1101/2024.07.31.24311250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the first signs of autism are often observed as early as 18-36 months of age, there is a broad uncertainty regarding future development, and clinicians lack predictive tools to identify those who will later be diagnosed with co-occurring intellectual disability (ID). Here, we developed predictive models of ID in autistic children (n=5,633 from three cohorts), integrating different classes of genetic variants alongside developmental milestones. The integrated model yielded an AUC ROC=0.65, with this predictive performance cross-validated and generalised across cohorts. Positive predictive values reached up to 55%, accurately identifying 10% of ID cases. The ability to stratify the probabilities of ID using genetic variants was up to twofold greater in individuals with delayed milestones compared to those with typical development. These findings underscore the potential of models in neurodevelopmental medicine that integrate genomics and clinical observations to predict outcomes and target interventions.\",\"PeriodicalId\":501375,\"journal\":{\"name\":\"medRxiv - Genetic and Genomic Medicine\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Genetic and Genomic Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.31.24311250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Genetic and Genomic Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.31.24311250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
虽然自闭症的最初症状通常在 18-36 个月大时就可观察到,但未来的发展却存在广泛的不确定性,临床医生缺乏预测工具来识别那些日后会被诊断为并发智障(ID)的儿童。在此,我们开发了自闭症儿童智障的预测模型(n=5,633,来自三个队列),将不同类别的遗传变异与发育里程碑整合在一起。综合模型的AUC ROC=0.65,这一预测性能经过交叉验证,并在不同队列中得到推广。阳性预测值高达 55%,能准确识别 10% 的 ID 病例。利用基因变异对发育里程碑延迟个体的ID概率进行分层的能力是发育典型个体的两倍。这些发现强调了神经发育医学模型的潜力,该模型整合了基因组学和临床观察,可预测结果并有针对性地采取干预措施。
Integrating genomic variants and developmental milestones to predict cognitive and adaptive outcomes in autistic children
Although the first signs of autism are often observed as early as 18-36 months of age, there is a broad uncertainty regarding future development, and clinicians lack predictive tools to identify those who will later be diagnosed with co-occurring intellectual disability (ID). Here, we developed predictive models of ID in autistic children (n=5,633 from three cohorts), integrating different classes of genetic variants alongside developmental milestones. The integrated model yielded an AUC ROC=0.65, with this predictive performance cross-validated and generalised across cohorts. Positive predictive values reached up to 55%, accurately identifying 10% of ID cases. The ability to stratify the probabilities of ID using genetic variants was up to twofold greater in individuals with delayed milestones compared to those with typical development. These findings underscore the potential of models in neurodevelopmental medicine that integrate genomics and clinical observations to predict outcomes and target interventions.