利用一维卷积神经网络诊断非对称正齿轮齿根裂纹的对比实验研究

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-07-26 DOI:10.1016/j.mechmachtheory.2024.105755
{"title":"利用一维卷积神经网络诊断非对称正齿轮齿根裂纹的对比实验研究","authors":"","doi":"10.1016/j.mechmachtheory.2024.105755","DOIUrl":null,"url":null,"abstract":"<div><p>Gearboxes transfer rotational motion and handle precision functionalities in many fields, including aviation, wind turbines, and industrial services. Their health management is essential to minimize workforce risks, increase the level of safety, and avoid machine breakdowns. From this standpoint, the present experimental research work developed a convolutional neural network-based method for diagnosing different levels of tooth root cracks (25 %-50 %-75 %-100 %) for symmetric (20°/20°) and asymmetric (20°/30°) profiled gear pairs. A series of vibration experiments were performed on a one-stage spur gearbox to achieve this by using a tri-axial accelerometer under variable working loads. The main purpose of this experimental research study is to explore the influence of the tooth profile on spur gears’ vibration responses and whether utilizing an asymmetric tooth profile would positively impact a deep learning algorithm's classification accuracy to add to the enhancements it provides in terms of fatigue life, mesh stiffness, and impact strength. Experimental results revealed that the overall classification accuracy could be increased by 7.712 % by feeding the proposed deep learning model with vibration data measured using test samples with asymmetric teeth.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative experimental research on the diagnosis of tooth root cracks in asymmetric spur gear pairs with a one-dimensional convolutional neural network\",\"authors\":\"\",\"doi\":\"10.1016/j.mechmachtheory.2024.105755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gearboxes transfer rotational motion and handle precision functionalities in many fields, including aviation, wind turbines, and industrial services. Their health management is essential to minimize workforce risks, increase the level of safety, and avoid machine breakdowns. From this standpoint, the present experimental research work developed a convolutional neural network-based method for diagnosing different levels of tooth root cracks (25 %-50 %-75 %-100 %) for symmetric (20°/20°) and asymmetric (20°/30°) profiled gear pairs. A series of vibration experiments were performed on a one-stage spur gearbox to achieve this by using a tri-axial accelerometer under variable working loads. The main purpose of this experimental research study is to explore the influence of the tooth profile on spur gears’ vibration responses and whether utilizing an asymmetric tooth profile would positively impact a deep learning algorithm's classification accuracy to add to the enhancements it provides in terms of fatigue life, mesh stiffness, and impact strength. Experimental results revealed that the overall classification accuracy could be increased by 7.712 % by feeding the proposed deep learning model with vibration data measured using test samples with asymmetric teeth.</p></div>\",\"PeriodicalId\":49845,\"journal\":{\"name\":\"Mechanism and Machine Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanism and Machine Theory\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094114X24001824\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001824","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在航空、风力涡轮机和工业服务等许多领域,齿轮箱都能传递旋转运动和处理精密功能。齿轮箱的健康管理对于最大限度地降低劳动力风险、提高安全水平和避免机器故障至关重要。从这个角度出发,本实验研究工作开发了一种基于卷积神经网络的方法,用于诊断对称(20°/20°)和非对称(20°/30°)齿形齿轮对的不同程度的齿根裂纹(25 %-50 %-75 %-100%)。为此,我们使用三轴加速度计在可变工作载荷下对一级直齿轮变速箱进行了一系列振动实验。本实验研究的主要目的是探索齿廓对正齿轮振动响应的影响,以及利用非对称齿廓是否会对深度学习算法的分类准确性产生积极影响,从而提高其在疲劳寿命、啮合刚度和冲击强度方面的性能。实验结果表明,将使用非对称轮齿测试样本测量的振动数据输入所提出的深度学习模型后,整体分类准确率可提高 7.712%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative experimental research on the diagnosis of tooth root cracks in asymmetric spur gear pairs with a one-dimensional convolutional neural network

Gearboxes transfer rotational motion and handle precision functionalities in many fields, including aviation, wind turbines, and industrial services. Their health management is essential to minimize workforce risks, increase the level of safety, and avoid machine breakdowns. From this standpoint, the present experimental research work developed a convolutional neural network-based method for diagnosing different levels of tooth root cracks (25 %-50 %-75 %-100 %) for symmetric (20°/20°) and asymmetric (20°/30°) profiled gear pairs. A series of vibration experiments were performed on a one-stage spur gearbox to achieve this by using a tri-axial accelerometer under variable working loads. The main purpose of this experimental research study is to explore the influence of the tooth profile on spur gears’ vibration responses and whether utilizing an asymmetric tooth profile would positively impact a deep learning algorithm's classification accuracy to add to the enhancements it provides in terms of fatigue life, mesh stiffness, and impact strength. Experimental results revealed that the overall classification accuracy could be increased by 7.712 % by feeding the proposed deep learning model with vibration data measured using test samples with asymmetric teeth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
Optimizing natural frequencies in compliant mechanisms through geometric scaling Transmission angle of planar four-bar linkages applicable for different input-output links subject to external loads A comprehensive study of the effect of thermal deformation on the dynamic characteristics of the high-speed spindle unit with various preload forces Oriblock: The origami-blocks based on hinged dissection Design and optimization of a planar anti-buckling compliant rotational joint with a remote center of motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1