带有碳化硅色心的全光学纳米级测温仪

IF 6.6 1区 物理与天体物理 Q1 OPTICS Photonics Research Pub Date : 2024-06-19 DOI:10.1364/prj.525971
Chengying Liu, Haibo Hu, Zhengtong Liu, Shumin Xiao, Junfeng Wang, Yu Zhou, Qinghai Song
{"title":"带有碳化硅色心的全光学纳米级测温仪","authors":"Chengying Liu, Haibo Hu, Zhengtong Liu, Shumin Xiao, Junfeng Wang, Yu Zhou, Qinghai Song","doi":"10.1364/prj.525971","DOIUrl":null,"url":null,"abstract":"All-optical thermometry plays a crucial role in precision temperature measurement across diverse fields. Quantum defects in solids are one of the most promising sensors due to their excellent sensitivity, stability, and biocompatibility. Yet, it faces limitations, such as the microwave heating effect and the complexity of spectral analysis. Addressing these challenges, we introduce a novel approach to nanoscale optical thermometry using quantum defects in silicon carbide (SiC), a material compatible with complementary metal-oxide-semiconductor (CMOS) processes. This method leverages the intensity ratio between anti-Stokes and Stokes emissions from SiC color centers, overcoming the drawbacks of traditional techniques such as optically detected magnetic resonance (ODMR) and zero-phonon line (ZPL) analysis. Our technique provides a real-time, highly sensitive (1.06<jats:italic>%</jats:italic> K<jats:sup>−1</jats:sup>), and diffraction-limited temperature sensing protocol, which potentially helps enhance thermal management in the future miniaturization of electronic components.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"43 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-optical nanoscale thermometry with silicon carbide color centers\",\"authors\":\"Chengying Liu, Haibo Hu, Zhengtong Liu, Shumin Xiao, Junfeng Wang, Yu Zhou, Qinghai Song\",\"doi\":\"10.1364/prj.525971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-optical thermometry plays a crucial role in precision temperature measurement across diverse fields. Quantum defects in solids are one of the most promising sensors due to their excellent sensitivity, stability, and biocompatibility. Yet, it faces limitations, such as the microwave heating effect and the complexity of spectral analysis. Addressing these challenges, we introduce a novel approach to nanoscale optical thermometry using quantum defects in silicon carbide (SiC), a material compatible with complementary metal-oxide-semiconductor (CMOS) processes. This method leverages the intensity ratio between anti-Stokes and Stokes emissions from SiC color centers, overcoming the drawbacks of traditional techniques such as optically detected magnetic resonance (ODMR) and zero-phonon line (ZPL) analysis. Our technique provides a real-time, highly sensitive (1.06<jats:italic>%</jats:italic> K<jats:sup>−1</jats:sup>), and diffraction-limited temperature sensing protocol, which potentially helps enhance thermal management in the future miniaturization of electronic components.\",\"PeriodicalId\":20048,\"journal\":{\"name\":\"Photonics Research\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/prj.525971\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.525971","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

全光学测温在不同领域的精确温度测量中发挥着至关重要的作用。固体中的量子缺陷因其出色的灵敏度、稳定性和生物相容性而成为最有前途的传感器之一。然而,它也面临着一些限制,如微波加热效应和光谱分析的复杂性。为了应对这些挑战,我们介绍了一种利用碳化硅(SiC)量子缺陷进行纳米级光学测温的新方法,碳化硅是一种与互补金属氧化物半导体(CMOS)工艺兼容的材料。该方法利用碳化硅色心的反斯托克斯和斯托克斯发射强度比,克服了传统技术(如光检测磁共振(ODMR)和零声子线(ZPL)分析)的缺点。我们的技术提供了一种实时、高灵敏度(1.06% K-1)和衍射限制的温度传感协议,可能有助于加强未来电子元件微型化过程中的热管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
All-optical nanoscale thermometry with silicon carbide color centers
All-optical thermometry plays a crucial role in precision temperature measurement across diverse fields. Quantum defects in solids are one of the most promising sensors due to their excellent sensitivity, stability, and biocompatibility. Yet, it faces limitations, such as the microwave heating effect and the complexity of spectral analysis. Addressing these challenges, we introduce a novel approach to nanoscale optical thermometry using quantum defects in silicon carbide (SiC), a material compatible with complementary metal-oxide-semiconductor (CMOS) processes. This method leverages the intensity ratio between anti-Stokes and Stokes emissions from SiC color centers, overcoming the drawbacks of traditional techniques such as optically detected magnetic resonance (ODMR) and zero-phonon line (ZPL) analysis. Our technique provides a real-time, highly sensitive (1.06% K−1), and diffraction-limited temperature sensing protocol, which potentially helps enhance thermal management in the future miniaturization of electronic components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.60
自引率
5.30%
发文量
1325
期刊介绍: Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.
期刊最新文献
All-optical nanoscale thermometry with silicon carbide color centers Tunnel silicon nitride manipulated reconfigurable bi-mode nociceptor analog High-order Autler–Townes splitting in electrically tunable photonic molecules Non-destructive electroluminescence inspection for LED epitaxial wafers based on soft single-contact operation Low-modal-crosstalk doped-fiber amplifiers in few-mode-fiber-based systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1