Zhenxin Wang, Alexey V. Krasavin, Chenxinyu Pan, Junsheng Zheng, Zhiyong Li, Xin Guo, Anatoly V. Zayats, Limin Tong, Pan Wang
{"title":"超薄金纳米带阵列中等离子共振的电调谐","authors":"Zhenxin Wang, Alexey V. Krasavin, Chenxinyu Pan, Junsheng Zheng, Zhiyong Li, Xin Guo, Anatoly V. Zayats, Limin Tong, Pan Wang","doi":"10.1364/prj.522533","DOIUrl":null,"url":null,"abstract":"Ultrathin plasmonic nanostructures offer an unparalleled opportunity for the study of light–matter interactions at the nanoscale and realization of compact nanophotonic devices. In this study, we introduce an ultrathin gold nanoribbon array and demonstrate an electric approach to actively tuning its plasmonic resonance, which leveraging the extreme light confinement capability in the ultrathin plasmonic nanostructure and a robust nanoscale electro-optical effect in indium tin oxide. Optimizing the design (to a total thickness as small as 12 nm for a 2-nm-thick gold nanoribbon array), we numerically demonstrate a spectral shift in the plasmonic resonance up to 36 nm along with an approximately 16% change in the transmission at a gate voltage below 1.7 V at the wavelength of 1.47 μm. This work presents progress towards electric tuning of plasmonic resonances in ultrathin metallic nanostructures for various applications including surface-enhanced spectroscopy, spontaneous emission enhancement, and optical modulation.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"77 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric tuning of plasmonic resonances in ultrathin gold nanoribbon arrays\",\"authors\":\"Zhenxin Wang, Alexey V. Krasavin, Chenxinyu Pan, Junsheng Zheng, Zhiyong Li, Xin Guo, Anatoly V. Zayats, Limin Tong, Pan Wang\",\"doi\":\"10.1364/prj.522533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrathin plasmonic nanostructures offer an unparalleled opportunity for the study of light–matter interactions at the nanoscale and realization of compact nanophotonic devices. In this study, we introduce an ultrathin gold nanoribbon array and demonstrate an electric approach to actively tuning its plasmonic resonance, which leveraging the extreme light confinement capability in the ultrathin plasmonic nanostructure and a robust nanoscale electro-optical effect in indium tin oxide. Optimizing the design (to a total thickness as small as 12 nm for a 2-nm-thick gold nanoribbon array), we numerically demonstrate a spectral shift in the plasmonic resonance up to 36 nm along with an approximately 16% change in the transmission at a gate voltage below 1.7 V at the wavelength of 1.47 μm. This work presents progress towards electric tuning of plasmonic resonances in ultrathin metallic nanostructures for various applications including surface-enhanced spectroscopy, spontaneous emission enhancement, and optical modulation.\",\"PeriodicalId\":20048,\"journal\":{\"name\":\"Photonics Research\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/prj.522533\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.522533","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Electric tuning of plasmonic resonances in ultrathin gold nanoribbon arrays
Ultrathin plasmonic nanostructures offer an unparalleled opportunity for the study of light–matter interactions at the nanoscale and realization of compact nanophotonic devices. In this study, we introduce an ultrathin gold nanoribbon array and demonstrate an electric approach to actively tuning its plasmonic resonance, which leveraging the extreme light confinement capability in the ultrathin plasmonic nanostructure and a robust nanoscale electro-optical effect in indium tin oxide. Optimizing the design (to a total thickness as small as 12 nm for a 2-nm-thick gold nanoribbon array), we numerically demonstrate a spectral shift in the plasmonic resonance up to 36 nm along with an approximately 16% change in the transmission at a gate voltage below 1.7 V at the wavelength of 1.47 μm. This work presents progress towards electric tuning of plasmonic resonances in ultrathin metallic nanostructures for various applications including surface-enhanced spectroscopy, spontaneous emission enhancement, and optical modulation.
期刊介绍:
Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.