用于深度学习中加速推理和训练的对称硅微栅谐振器光交叉棒阵列

IF 6.6 1区 物理与天体物理 Q1 OPTICS Photonics Research Pub Date : 2024-05-23 DOI:10.1364/prj.520518
Rui Tang, Shuhei Ohno, Ken Tanizawa, Kazuhiro Ikeda, Makoto Okano, Kasidit Toprasertpong, Shinichi Takagi, Mitsuru Takenaka
{"title":"用于深度学习中加速推理和训练的对称硅微栅谐振器光交叉棒阵列","authors":"Rui Tang, Shuhei Ohno, Ken Tanizawa, Kazuhiro Ikeda, Makoto Okano, Kasidit Toprasertpong, Shinichi Takagi, Mitsuru Takenaka","doi":"10.1364/prj.520518","DOIUrl":null,"url":null,"abstract":"Photonic integrated circuits are emerging as a promising platform for accelerating matrix multiplications in deep learning, leveraging the inherent parallel nature of light. Although various schemes have been proposed and demonstrated to realize such photonic matrix accelerators, the <jats:italic toggle=\"yes\">in situ</jats:italic> training of artificial neural networks using photonic accelerators remains challenging due to the difficulty of direct on-chip backpropagation on a photonic chip. In this work, we propose a silicon microring resonator (MRR) optical crossbar array with a symmetric structure that allows for simple on-chip backpropagation, potentially enabling the acceleration of both the inference and training phases of deep learning. We demonstrate a 4×4 circuit on a Si-on-insulator platform and use it to perform inference tasks of a simple neural network for classifying iris flowers, achieving a classification accuracy of 93.3%. Subsequently, we train the neural network using simulated on-chip backpropagation and achieve an accuracy of 91.1% in the same inference task after training. Furthermore, we simulate a convolutional neural network for handwritten digit recognition, using a 9×9 MRR crossbar array to perform the convolution operations. This work contributes to the realization of compact and energy-efficient photonic accelerators for deep learning.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"1 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric silicon microring resonator optical crossbar array for accelerated inference and training in deep learning\",\"authors\":\"Rui Tang, Shuhei Ohno, Ken Tanizawa, Kazuhiro Ikeda, Makoto Okano, Kasidit Toprasertpong, Shinichi Takagi, Mitsuru Takenaka\",\"doi\":\"10.1364/prj.520518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photonic integrated circuits are emerging as a promising platform for accelerating matrix multiplications in deep learning, leveraging the inherent parallel nature of light. Although various schemes have been proposed and demonstrated to realize such photonic matrix accelerators, the <jats:italic toggle=\\\"yes\\\">in situ</jats:italic> training of artificial neural networks using photonic accelerators remains challenging due to the difficulty of direct on-chip backpropagation on a photonic chip. In this work, we propose a silicon microring resonator (MRR) optical crossbar array with a symmetric structure that allows for simple on-chip backpropagation, potentially enabling the acceleration of both the inference and training phases of deep learning. We demonstrate a 4×4 circuit on a Si-on-insulator platform and use it to perform inference tasks of a simple neural network for classifying iris flowers, achieving a classification accuracy of 93.3%. Subsequently, we train the neural network using simulated on-chip backpropagation and achieve an accuracy of 91.1% in the same inference task after training. Furthermore, we simulate a convolutional neural network for handwritten digit recognition, using a 9×9 MRR crossbar array to perform the convolution operations. This work contributes to the realization of compact and energy-efficient photonic accelerators for deep learning.\",\"PeriodicalId\":20048,\"journal\":{\"name\":\"Photonics Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/prj.520518\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.520518","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

利用光固有的并行特性,光子集成电路正在成为深度学习中加速矩阵乘法的一个前景广阔的平台。虽然已经提出并演示了各种实现这种光子矩阵加速器的方案,但由于在光子芯片上直接进行片上反向传播存在困难,因此使用光子加速器对人工神经网络进行原位训练仍然具有挑战性。在这项工作中,我们提出了一种具有对称结构的硅微扰谐振器(MRR)光交叉棒阵列,它可以实现简单的片上反向传播,从而有可能加速深度学习的推理和训练阶段。我们在硅-绝缘体平台上演示了 4×4 电路,并用它来执行简单神经网络的推理任务,对虹膜花进行分类,分类准确率达到 93.3%。随后,我们使用模拟片上反向传播训练神经网络,训练后在相同推理任务中的准确率达到 91.1%。此外,我们还模拟了一个用于手写数字识别的卷积神经网络,使用 9×9 MRR 交叉条阵执行卷积运算。这项工作有助于实现用于深度学习的紧凑型高能效光子加速器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Symmetric silicon microring resonator optical crossbar array for accelerated inference and training in deep learning
Photonic integrated circuits are emerging as a promising platform for accelerating matrix multiplications in deep learning, leveraging the inherent parallel nature of light. Although various schemes have been proposed and demonstrated to realize such photonic matrix accelerators, the in situ training of artificial neural networks using photonic accelerators remains challenging due to the difficulty of direct on-chip backpropagation on a photonic chip. In this work, we propose a silicon microring resonator (MRR) optical crossbar array with a symmetric structure that allows for simple on-chip backpropagation, potentially enabling the acceleration of both the inference and training phases of deep learning. We demonstrate a 4×4 circuit on a Si-on-insulator platform and use it to perform inference tasks of a simple neural network for classifying iris flowers, achieving a classification accuracy of 93.3%. Subsequently, we train the neural network using simulated on-chip backpropagation and achieve an accuracy of 91.1% in the same inference task after training. Furthermore, we simulate a convolutional neural network for handwritten digit recognition, using a 9×9 MRR crossbar array to perform the convolution operations. This work contributes to the realization of compact and energy-efficient photonic accelerators for deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.60
自引率
5.30%
发文量
1325
期刊介绍: Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.
期刊最新文献
All-optical nanoscale thermometry with silicon carbide color centers Tunnel silicon nitride manipulated reconfigurable bi-mode nociceptor analog High-order Autler–Townes splitting in electrically tunable photonic molecules Non-destructive electroluminescence inspection for LED epitaxial wafers based on soft single-contact operation Low-modal-crosstalk doped-fiber amplifiers in few-mode-fiber-based systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1