Sandro C. Oliveira, Maria S. Soares, Bárbara V. Gonçalves, Andreia C. M. Rodrigues, Amadeu M. V. M. Soares, Rita G. Sobral, Nuno F. Santos, Jan Nedoma, Pedro L. Almeida, Carlos Marques
{"title":"利用快速分析工具选择性检测大肠杆菌的液晶免疫传感器","authors":"Sandro C. Oliveira, Maria S. Soares, Bárbara V. Gonçalves, Andreia C. M. Rodrigues, Amadeu M. V. M. Soares, Rita G. Sobral, Nuno F. Santos, Jan Nedoma, Pedro L. Almeida, Carlos Marques","doi":"10.1364/prj.524660","DOIUrl":null,"url":null,"abstract":"The consumption of contaminated food may cause serious illnesses, and traditional methods to detect <jats:italic toggle=\"yes\">Escherichia coli</jats:italic> are still associated with long waiting times and high costs given the necessity to transport samples to specialized laboratories. There is a need to develop new technologies that allow cheap, fast, and direct monitoring at the site of interest. Thus, in this work, we developed optical immunosensors for the selective detection of <jats:italic toggle=\"yes\">E. coli</jats:italic>, based on liquid crystal technology, whose molecules can align in different manners depending on the boundary conditions (such as substrates) as well as the environment that they experience. Each glass substrate was functionalized with anti-<jats:italic toggle=\"yes\">E. coli</jats:italic> antibody using cysteamine as an intermediate, and a vertical alignment was imposed on the liquid crystal molecules by using DMOAP during functionalization. The presence of bacteria disrupts the alignment of the liquid crystal molecules, changing the intensity of light emerging between cross polarizers, measured using a polarized optical microscope and a monochromator. It was possible to detect <jats:italic toggle=\"yes\">E. coli</jats:italic> in suspensions in the concentration range from 2.8 cells/mL to 2.8×10<jats:sup>9</jats:sup> cells/<jats:italic>mL</jats:italic>. Selectivity was also evaluated, and the sensors were used to analyze contaminated water samples. A prototype was developed to allow faster, <jats:italic toggle=\"yes\">in-situ</jats:italic>, and easier analysis avoiding bulky instruments.","PeriodicalId":20048,"journal":{"name":"Photonics Research","volume":"43 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid crystal immunosensors for the selective detection of Escherichia coli with a fast analysis tool\",\"authors\":\"Sandro C. Oliveira, Maria S. Soares, Bárbara V. Gonçalves, Andreia C. M. Rodrigues, Amadeu M. V. M. Soares, Rita G. Sobral, Nuno F. Santos, Jan Nedoma, Pedro L. Almeida, Carlos Marques\",\"doi\":\"10.1364/prj.524660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The consumption of contaminated food may cause serious illnesses, and traditional methods to detect <jats:italic toggle=\\\"yes\\\">Escherichia coli</jats:italic> are still associated with long waiting times and high costs given the necessity to transport samples to specialized laboratories. There is a need to develop new technologies that allow cheap, fast, and direct monitoring at the site of interest. Thus, in this work, we developed optical immunosensors for the selective detection of <jats:italic toggle=\\\"yes\\\">E. coli</jats:italic>, based on liquid crystal technology, whose molecules can align in different manners depending on the boundary conditions (such as substrates) as well as the environment that they experience. Each glass substrate was functionalized with anti-<jats:italic toggle=\\\"yes\\\">E. coli</jats:italic> antibody using cysteamine as an intermediate, and a vertical alignment was imposed on the liquid crystal molecules by using DMOAP during functionalization. The presence of bacteria disrupts the alignment of the liquid crystal molecules, changing the intensity of light emerging between cross polarizers, measured using a polarized optical microscope and a monochromator. It was possible to detect <jats:italic toggle=\\\"yes\\\">E. coli</jats:italic> in suspensions in the concentration range from 2.8 cells/mL to 2.8×10<jats:sup>9</jats:sup> cells/<jats:italic>mL</jats:italic>. Selectivity was also evaluated, and the sensors were used to analyze contaminated water samples. A prototype was developed to allow faster, <jats:italic toggle=\\\"yes\\\">in-situ</jats:italic>, and easier analysis avoiding bulky instruments.\",\"PeriodicalId\":20048,\"journal\":{\"name\":\"Photonics Research\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/prj.524660\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/prj.524660","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Liquid crystal immunosensors for the selective detection of Escherichia coli with a fast analysis tool
The consumption of contaminated food may cause serious illnesses, and traditional methods to detect Escherichia coli are still associated with long waiting times and high costs given the necessity to transport samples to specialized laboratories. There is a need to develop new technologies that allow cheap, fast, and direct monitoring at the site of interest. Thus, in this work, we developed optical immunosensors for the selective detection of E. coli, based on liquid crystal technology, whose molecules can align in different manners depending on the boundary conditions (such as substrates) as well as the environment that they experience. Each glass substrate was functionalized with anti-E. coli antibody using cysteamine as an intermediate, and a vertical alignment was imposed on the liquid crystal molecules by using DMOAP during functionalization. The presence of bacteria disrupts the alignment of the liquid crystal molecules, changing the intensity of light emerging between cross polarizers, measured using a polarized optical microscope and a monochromator. It was possible to detect E. coli in suspensions in the concentration range from 2.8 cells/mL to 2.8×109 cells/mL. Selectivity was also evaluated, and the sensors were used to analyze contaminated water samples. A prototype was developed to allow faster, in-situ, and easier analysis avoiding bulky instruments.
期刊介绍:
Photonics Research is a joint publishing effort of the OSA and Chinese Laser Press.It publishes fundamental and applied research progress in optics and photonics. Topics include, but are not limited to, lasers, LEDs and other light sources; fiber optics and optical communications; imaging, detectors and sensors; novel materials and engineered structures; optical data storage and displays; plasmonics; quantum optics; diffractive optics and guided optics; medical optics and biophotonics; ultraviolet and x-rays; terahertz technology.