土壤有机碳动态模式:综合微生物活动、趋化性和数据驱动方法

Angela Monti, Fasma Diele, Deborah Lacitignola, Carmela Marangi
{"title":"土壤有机碳动态模式:综合微生物活动、趋化性和数据驱动方法","authors":"Angela Monti, Fasma Diele, Deborah Lacitignola, Carmela Marangi","doi":"arxiv-2407.20625","DOIUrl":null,"url":null,"abstract":"Models of soil organic carbon (SOC) frequently overlook the effects of\nspatial dimensions and microbiological activities. In this paper, we focus on\ntwo reaction-diffusion chemotaxis models for SOC dynamics, both supporting\nchemotaxis-driven instability and exhibiting a variety of spatial patterns as\nstripes, spots and hexagons when the microbial chemotactic sensitivity is above\na critical threshold. We use symplectic techniques to numerically approximate\nchemotaxis-driven spatial patterns and explore the effectiveness of the\npiecewice dynamic mode decomposition (pDMD) to reconstruct them. Our findings\nshow that pDMD is effective at precisely recreating chemotaxis-driven spatial\npatterns, therefore broadening the range of application of the method to\nclasses of solutions different than Turing patterns. By validating its efficacy\nacross a wider range of models, this research lays the groundwork for applying\npDMD to experimental spatiotemporal data, advancing predictions crucial for\nsoil microbial ecology and agricultural sustainability.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns in soil organic carbon dynamics: integrating microbial activity, chemotaxis and data-driven approaches\",\"authors\":\"Angela Monti, Fasma Diele, Deborah Lacitignola, Carmela Marangi\",\"doi\":\"arxiv-2407.20625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Models of soil organic carbon (SOC) frequently overlook the effects of\\nspatial dimensions and microbiological activities. In this paper, we focus on\\ntwo reaction-diffusion chemotaxis models for SOC dynamics, both supporting\\nchemotaxis-driven instability and exhibiting a variety of spatial patterns as\\nstripes, spots and hexagons when the microbial chemotactic sensitivity is above\\na critical threshold. We use symplectic techniques to numerically approximate\\nchemotaxis-driven spatial patterns and explore the effectiveness of the\\npiecewice dynamic mode decomposition (pDMD) to reconstruct them. Our findings\\nshow that pDMD is effective at precisely recreating chemotaxis-driven spatial\\npatterns, therefore broadening the range of application of the method to\\nclasses of solutions different than Turing patterns. By validating its efficacy\\nacross a wider range of models, this research lays the groundwork for applying\\npDMD to experimental spatiotemporal data, advancing predictions crucial for\\nsoil microbial ecology and agricultural sustainability.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土壤有机碳(SOC)模型经常忽略空间维度和微生物活动的影响。在本文中,我们重点研究了两种用于 SOC 动力学的反应扩散趋化模型,这两种模型都支持趋化驱动的不稳定性,并在微生物趋化灵敏度高于临界阈值时表现出多种空间模式,如条状、点状和六边形。我们利用交折射技术对趋化驱动的空间模式进行了数值近似,并探索了片断动态模式分解(pDMD)重建空间模式的有效性。我们的研究结果表明,pDMD 能够有效地精确再现趋化驱动的空间模式,从而拓宽了该方法的应用范围,使其适用于图灵模式以外的各类解决方案。通过在更广泛的模型中验证其有效性,这项研究为将 pDMD 应用于实验性时空数据奠定了基础,从而推进了对土壤微生物生态学和农业可持续发展至关重要的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Patterns in soil organic carbon dynamics: integrating microbial activity, chemotaxis and data-driven approaches
Models of soil organic carbon (SOC) frequently overlook the effects of spatial dimensions and microbiological activities. In this paper, we focus on two reaction-diffusion chemotaxis models for SOC dynamics, both supporting chemotaxis-driven instability and exhibiting a variety of spatial patterns as stripes, spots and hexagons when the microbial chemotactic sensitivity is above a critical threshold. We use symplectic techniques to numerically approximate chemotaxis-driven spatial patterns and explore the effectiveness of the piecewice dynamic mode decomposition (pDMD) to reconstruct them. Our findings show that pDMD is effective at precisely recreating chemotaxis-driven spatial patterns, therefore broadening the range of application of the method to classes of solutions different than Turing patterns. By validating its efficacy across a wider range of models, this research lays the groundwork for applying pDMD to experimental spatiotemporal data, advancing predictions crucial for soil microbial ecology and agricultural sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1