预测 T 细胞受体的特异性

Tengyao Tu, Wei Zeng, Kun Zhao, Zhenyu Zhang
{"title":"预测 T 细胞受体的特异性","authors":"Tengyao Tu, Wei Zeng, Kun Zhao, Zhenyu Zhang","doi":"arxiv-2407.19349","DOIUrl":null,"url":null,"abstract":"Researching the specificity of TCR contributes to the development of\nimmunotherapy and provides new opportunities and strategies for personalized\ncancer immunotherapy. Therefore, we established a TCR generative specificity\ndetection framework consisting of an antigen selector and a TCR classifier\nbased on the Random Forest algorithm, aiming to efficiently screen out TCRs and\ntarget antigens and achieve TCR specificity prediction. Furthermore, we used\nthe k-fold validation method to compare the performance of our model with\nordinary deep learning methods. The result proves that adding a classifier to\nthe model based on the random forest algorithm is very effective, and our model\ngenerally outperforms ordinary deep learning methods. Moreover, we put forward\nfeasible optimization suggestions for the shortcomings and challenges of our\nmodel found during model implementation.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting T-Cell Receptor Specificity\",\"authors\":\"Tengyao Tu, Wei Zeng, Kun Zhao, Zhenyu Zhang\",\"doi\":\"arxiv-2407.19349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researching the specificity of TCR contributes to the development of\\nimmunotherapy and provides new opportunities and strategies for personalized\\ncancer immunotherapy. Therefore, we established a TCR generative specificity\\ndetection framework consisting of an antigen selector and a TCR classifier\\nbased on the Random Forest algorithm, aiming to efficiently screen out TCRs and\\ntarget antigens and achieve TCR specificity prediction. Furthermore, we used\\nthe k-fold validation method to compare the performance of our model with\\nordinary deep learning methods. The result proves that adding a classifier to\\nthe model based on the random forest algorithm is very effective, and our model\\ngenerally outperforms ordinary deep learning methods. Moreover, we put forward\\nfeasible optimization suggestions for the shortcomings and challenges of our\\nmodel found during model implementation.\",\"PeriodicalId\":501266,\"journal\":{\"name\":\"arXiv - QuanBio - Quantitative Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Quantitative Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究TCR的特异性有助于免疫疗法的发展,并为个性化癌症免疫疗法提供新的机遇和策略。因此,我们建立了一个由抗原选择器和基于随机森林算法的TCR分类器组成的TCR生成特异性检测框架,旨在有效筛选出TCR和目标抗原,实现TCR特异性预测。此外,我们还使用 k-fold 验证法比较了我们的模型与普通深度学习方法的性能。结果证明,在基于随机森林算法的模型中加入分类器是非常有效的,我们的模型总体上优于普通的深度学习方法。此外,我们还针对模型实现过程中发现的不足和面临的挑战提出了可行的优化建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting T-Cell Receptor Specificity
Researching the specificity of TCR contributes to the development of immunotherapy and provides new opportunities and strategies for personalized cancer immunotherapy. Therefore, we established a TCR generative specificity detection framework consisting of an antigen selector and a TCR classifier based on the Random Forest algorithm, aiming to efficiently screen out TCRs and target antigens and achieve TCR specificity prediction. Furthermore, we used the k-fold validation method to compare the performance of our model with ordinary deep learning methods. The result proves that adding a classifier to the model based on the random forest algorithm is very effective, and our model generally outperforms ordinary deep learning methods. Moreover, we put forward feasible optimization suggestions for the shortcomings and challenges of our model found during model implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities Automating proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning A computational framework for optimal and Model Predictive Control of stochastic gene regulatory networks Active learning for energy-based antibody optimization and enhanced screening Comorbid anxiety symptoms predict lower odds of improvement in depression symptoms during smartphone-delivered psychotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1