植物纤维增强聚合物复合材料的可持续特性综述:特性和性能

IF 2.9 4区 化学 Q2 POLYMER SCIENCE Polymer International Pub Date : 2024-07-31 DOI:10.1002/pi.6686
Mariappan Sathish, Nachimuthu Radhika, Nitin Venuvanka, Lakshminarasimhan Rajeshkumar
{"title":"植物纤维增强聚合物复合材料的可持续特性综述:特性和性能","authors":"Mariappan Sathish,&nbsp;Nachimuthu Radhika,&nbsp;Nitin Venuvanka,&nbsp;Lakshminarasimhan Rajeshkumar","doi":"10.1002/pi.6686","DOIUrl":null,"url":null,"abstract":"<p>Fiber-reinforced composites have emerged as versatile materials with applications spanning diverse industries, driven by their exceptional mechanical properties and lightweight nature. This review provides a comprehensive overview of natural fiber-reinforced composites, focusing on their enhanced mechanical and functional properties achieved through modern processing techniques. The study delves into various manufacturing methods, such as thermoforming, additive manufacturing, compression molding, electro-spinning, pultrusion and autoclave molding, which have significantly contributed to the advancement of these composites. The review further investigates the multifaceted properties of these composites, which highlights the versatility and applicability of these materials and provides a holistic understanding of their potential applications. Additionally, the work addresses current research gaps and identifies prospects, shedding light on the evolving landscape of natural fiber-reinforced composites. The synthesis of processing techniques, material properties and potential applications offers valuable insights for researchers, practitioners and industries aiming to harness the full potential of these sustainable and high-performance materials. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on sustainable properties of plant fiber-reinforced polymer composites: characteristics and properties\",\"authors\":\"Mariappan Sathish,&nbsp;Nachimuthu Radhika,&nbsp;Nitin Venuvanka,&nbsp;Lakshminarasimhan Rajeshkumar\",\"doi\":\"10.1002/pi.6686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fiber-reinforced composites have emerged as versatile materials with applications spanning diverse industries, driven by their exceptional mechanical properties and lightweight nature. This review provides a comprehensive overview of natural fiber-reinforced composites, focusing on their enhanced mechanical and functional properties achieved through modern processing techniques. The study delves into various manufacturing methods, such as thermoforming, additive manufacturing, compression molding, electro-spinning, pultrusion and autoclave molding, which have significantly contributed to the advancement of these composites. The review further investigates the multifaceted properties of these composites, which highlights the versatility and applicability of these materials and provides a holistic understanding of their potential applications. Additionally, the work addresses current research gaps and identifies prospects, shedding light on the evolving landscape of natural fiber-reinforced composites. The synthesis of processing techniques, material properties and potential applications offers valuable insights for researchers, practitioners and industries aiming to harness the full potential of these sustainable and high-performance materials. © 2024 Society of Chemical Industry.</p>\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pi.6686\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6686","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

纤维增强复合材料因其卓越的机械性能和轻质特性,已成为应用于各行各业的多功能材料。本综述全面概述了天然纤维增强复合材料,重点介绍了通过现代加工技术实现的增强机械和功能特性。研究深入探讨了各种制造方法,如热成型、添加剂制造、压缩成型、电纺丝、拉挤成型和高压釜成型,这些方法极大地促进了这些复合材料的发展。综述进一步研究了这些复合材料的多方面特性,突出了这些材料的多功能性和适用性,并提供了对其潜在应用的整体理解。此外,该研究还探讨了当前的研究空白并确定了发展前景,揭示了天然纤维增强复合材料不断发展的前景。对加工技术、材料特性和潜在应用的综述,为旨在充分利用这些可持续高性能材料潜力的研究人员、从业人员和行业提供了宝贵的见解。© 2024 化学工业协会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review on sustainable properties of plant fiber-reinforced polymer composites: characteristics and properties

Fiber-reinforced composites have emerged as versatile materials with applications spanning diverse industries, driven by their exceptional mechanical properties and lightweight nature. This review provides a comprehensive overview of natural fiber-reinforced composites, focusing on their enhanced mechanical and functional properties achieved through modern processing techniques. The study delves into various manufacturing methods, such as thermoforming, additive manufacturing, compression molding, electro-spinning, pultrusion and autoclave molding, which have significantly contributed to the advancement of these composites. The review further investigates the multifaceted properties of these composites, which highlights the versatility and applicability of these materials and provides a holistic understanding of their potential applications. Additionally, the work addresses current research gaps and identifies prospects, shedding light on the evolving landscape of natural fiber-reinforced composites. The synthesis of processing techniques, material properties and potential applications offers valuable insights for researchers, practitioners and industries aiming to harness the full potential of these sustainable and high-performance materials. © 2024 Society of Chemical Industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
期刊最新文献
Issue Information Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers Issue Information Natural polymers for emerging technological applications: cellulose, lignin, shellac and silk Investigate Performance of ATGF nanocomposite based on guar gum polymer for adsorption of Congo Red dye and alpha lipoic acid drug from wastewater: study kinetics and simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1