低空平台中的综合接入和回程(IAB)

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Communications Society Pub Date : 2024-07-29 DOI:10.1109/OJCOMS.2024.3435870
Reza Ghasemi Alavicheh;S. Mohammad Razavizadeh;Halim Yanikomeroglu
{"title":"低空平台中的综合接入和回程(IAB)","authors":"Reza Ghasemi Alavicheh;S. Mohammad Razavizadeh;Halim Yanikomeroglu","doi":"10.1109/OJCOMS.2024.3435870","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the problem of utilizing Integrated Access and Backhaul (IAB) technology in Non-Terrestrial Networks (NTN), with a particular focus on aerial access networks. We consider an Uncrewed Aerial Vehicle (UAV)-based wireless network comprised of two layers of UAVs: (a) a lower layer consisting a number of flying users and a UAV Base Station (BS) that provides coverage for terrestrial users and, (b) an upper layer designated to provide both wireless access for flying users and backhaul connectivity for UAV BS. By adopting IAB technology, the backhaul and access links collaboratively share their resources, enabling aerial backhauling and the utilization of the same infrastructure and frequency resources for access links. A sum-rate maximization problem is formulated by considering aerial backhaul constraints to optimally allocate the frequency spectrum between aerial and terrestrial networks. We decompose the resulting non-convex optimization problem into two sub-problems of beamforming and spectrum allocation and then propose efficient solutions for each. Numerical results in different scenarios yield insightful findings about the effectiveness of using the IAB technique in aerial networks.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614380","citationCount":"0","resultStr":"{\"title\":\"Integrated Access and Backhaul (IAB) in Low Altitude Platforms\",\"authors\":\"Reza Ghasemi Alavicheh;S. Mohammad Razavizadeh;Halim Yanikomeroglu\",\"doi\":\"10.1109/OJCOMS.2024.3435870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the problem of utilizing Integrated Access and Backhaul (IAB) technology in Non-Terrestrial Networks (NTN), with a particular focus on aerial access networks. We consider an Uncrewed Aerial Vehicle (UAV)-based wireless network comprised of two layers of UAVs: (a) a lower layer consisting a number of flying users and a UAV Base Station (BS) that provides coverage for terrestrial users and, (b) an upper layer designated to provide both wireless access for flying users and backhaul connectivity for UAV BS. By adopting IAB technology, the backhaul and access links collaboratively share their resources, enabling aerial backhauling and the utilization of the same infrastructure and frequency resources for access links. A sum-rate maximization problem is formulated by considering aerial backhaul constraints to optimally allocate the frequency spectrum between aerial and terrestrial networks. We decompose the resulting non-convex optimization problem into two sub-problems of beamforming and spectrum allocation and then propose efficient solutions for each. Numerical results in different scenarios yield insightful findings about the effectiveness of using the IAB technique in aerial networks.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614380\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10614380/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10614380/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了在非地面网络(NTN)中利用集成接入和回程(IAB)技术的问题,尤其关注空中接入网络。我们考虑了一个基于无人飞行器(UAV)的无线网络,该网络由两层无人飞行器组成:(a) 下层由若干飞行用户和一个为地面用户提供覆盖的无人飞行器基站(BS)组成;(b) 上层指定为飞行用户提供无线接入,并为无人飞行器基站提供回程连接。通过采用 IAB 技术,回程链路和接入链路协同共享资源,实现空中回程,并利用相同的基础设施和频率资源进行接入链路。考虑到空中回程约束,我们提出了一个总速率最大化问题,以便在空中网络和地面网络之间优化分配频谱。我们将由此产生的非凸优化问题分解为波束成形和频谱分配两个子问题,然后分别提出了有效的解决方案。不同场景下的数值结果对在空中网络中使用 IAB 技术的有效性产生了深刻的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Access and Backhaul (IAB) in Low Altitude Platforms
In this paper, we explore the problem of utilizing Integrated Access and Backhaul (IAB) technology in Non-Terrestrial Networks (NTN), with a particular focus on aerial access networks. We consider an Uncrewed Aerial Vehicle (UAV)-based wireless network comprised of two layers of UAVs: (a) a lower layer consisting a number of flying users and a UAV Base Station (BS) that provides coverage for terrestrial users and, (b) an upper layer designated to provide both wireless access for flying users and backhaul connectivity for UAV BS. By adopting IAB technology, the backhaul and access links collaboratively share their resources, enabling aerial backhauling and the utilization of the same infrastructure and frequency resources for access links. A sum-rate maximization problem is formulated by considering aerial backhaul constraints to optimally allocate the frequency spectrum between aerial and terrestrial networks. We decompose the resulting non-convex optimization problem into two sub-problems of beamforming and spectrum allocation and then propose efficient solutions for each. Numerical results in different scenarios yield insightful findings about the effectiveness of using the IAB technique in aerial networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
期刊最新文献
GP-DGECN: Geometric Prior Dynamic Group Equivariant Convolutional Networks for Specific Emitter Identification A Tractable Framework for Spectrum Coexistence Between Satellite Receivers and Terrestrial Networks A Survey of LoRaWAN-Integrated Wearable Sensor Networks for Human Activity Recognition: Applications, Challenges and Possible Solutions Detection of Zero-Day Attacks in a Software-Defined LEO Constellation Network Using Enhanced Network Metric Predictions Few-Shot Class-Incremental Learning for Network Intrusion Detection Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1