Reza Ghasemi Alavicheh;S. Mohammad Razavizadeh;Halim Yanikomeroglu
{"title":"低空平台中的综合接入和回程(IAB)","authors":"Reza Ghasemi Alavicheh;S. Mohammad Razavizadeh;Halim Yanikomeroglu","doi":"10.1109/OJCOMS.2024.3435870","DOIUrl":null,"url":null,"abstract":"In this paper, we explore the problem of utilizing Integrated Access and Backhaul (IAB) technology in Non-Terrestrial Networks (NTN), with a particular focus on aerial access networks. We consider an Uncrewed Aerial Vehicle (UAV)-based wireless network comprised of two layers of UAVs: (a) a lower layer consisting a number of flying users and a UAV Base Station (BS) that provides coverage for terrestrial users and, (b) an upper layer designated to provide both wireless access for flying users and backhaul connectivity for UAV BS. By adopting IAB technology, the backhaul and access links collaboratively share their resources, enabling aerial backhauling and the utilization of the same infrastructure and frequency resources for access links. A sum-rate maximization problem is formulated by considering aerial backhaul constraints to optimally allocate the frequency spectrum between aerial and terrestrial networks. We decompose the resulting non-convex optimization problem into two sub-problems of beamforming and spectrum allocation and then propose efficient solutions for each. Numerical results in different scenarios yield insightful findings about the effectiveness of using the IAB technique in aerial networks.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614380","citationCount":"0","resultStr":"{\"title\":\"Integrated Access and Backhaul (IAB) in Low Altitude Platforms\",\"authors\":\"Reza Ghasemi Alavicheh;S. Mohammad Razavizadeh;Halim Yanikomeroglu\",\"doi\":\"10.1109/OJCOMS.2024.3435870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore the problem of utilizing Integrated Access and Backhaul (IAB) technology in Non-Terrestrial Networks (NTN), with a particular focus on aerial access networks. We consider an Uncrewed Aerial Vehicle (UAV)-based wireless network comprised of two layers of UAVs: (a) a lower layer consisting a number of flying users and a UAV Base Station (BS) that provides coverage for terrestrial users and, (b) an upper layer designated to provide both wireless access for flying users and backhaul connectivity for UAV BS. By adopting IAB technology, the backhaul and access links collaboratively share their resources, enabling aerial backhauling and the utilization of the same infrastructure and frequency resources for access links. A sum-rate maximization problem is formulated by considering aerial backhaul constraints to optimally allocate the frequency spectrum between aerial and terrestrial networks. We decompose the resulting non-convex optimization problem into two sub-problems of beamforming and spectrum allocation and then propose efficient solutions for each. Numerical results in different scenarios yield insightful findings about the effectiveness of using the IAB technique in aerial networks.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614380\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10614380/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10614380/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Integrated Access and Backhaul (IAB) in Low Altitude Platforms
In this paper, we explore the problem of utilizing Integrated Access and Backhaul (IAB) technology in Non-Terrestrial Networks (NTN), with a particular focus on aerial access networks. We consider an Uncrewed Aerial Vehicle (UAV)-based wireless network comprised of two layers of UAVs: (a) a lower layer consisting a number of flying users and a UAV Base Station (BS) that provides coverage for terrestrial users and, (b) an upper layer designated to provide both wireless access for flying users and backhaul connectivity for UAV BS. By adopting IAB technology, the backhaul and access links collaboratively share their resources, enabling aerial backhauling and the utilization of the same infrastructure and frequency resources for access links. A sum-rate maximization problem is formulated by considering aerial backhaul constraints to optimally allocate the frequency spectrum between aerial and terrestrial networks. We decompose the resulting non-convex optimization problem into two sub-problems of beamforming and spectrum allocation and then propose efficient solutions for each. Numerical results in different scenarios yield insightful findings about the effectiveness of using the IAB technique in aerial networks.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.