银和铈修饰生物活性玻璃瞬时早期细菌粘附和抗菌活性的原子力显微镜研究

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research Pub Date : 2024-07-31 DOI:10.1557/s43578-024-01391-9
Shivani Gour, Abhijit Mukherjee, Kantesh Balani, Navdeep K. Dhami
{"title":"银和铈修饰生物活性玻璃瞬时早期细菌粘附和抗菌活性的原子力显微镜研究","authors":"Shivani Gour, Abhijit Mukherjee, Kantesh Balani, Navdeep K. Dhami","doi":"10.1557/s43578-024-01391-9","DOIUrl":null,"url":null,"abstract":"<p>Bioactive glass 58S (BG58S) is widely recognised for its bioactivity and antibacterial properties, making it a promising material for orthopaedic implant applications. This study investigates the effects of incorporating silver (BG58S-2.5Ag) and cerium oxide (BG58S-5C) into BG58S on early-stage bacterial adhesion and subsequent bacterial growth inhibition. Using a high-intensity ball milling approach, BG58S was modified with 5% cerium oxide (CeO<sub>2</sub>) and 2.5% silver (Ag) nanoparticles to create homogeneous BG58S-2.5Ag and BG58S-5C nanocomposites. Custom-made biomineral probes were employed to measure the bacterial adhesion within one second of contact with Gram-negative <i>Escherichia coli</i> and Gram-positive <i>Staphylococcus aureus</i>, using Atomic Force Microscopy (AFM). The results demonstrated that BG58S-2.5Ag showed significantly stronger transient adhesion to bacteria compared to BG58S, leading to a more effective long-term antibacterial response. Additionally, it was observed that the antibacterial effect of Ag commenced within one second of contact. These findings indicate a potential correlation between the rate of bond strengthening and cell wall penetration. This study highlights the potential for enhancing the effectiveness of antibacterial implant surfaces for various biomaterial applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"41 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic force microscopic investigations of transient early-stage bacterial adhesion and antibacterial activity of silver and ceria modified bioactive glass\",\"authors\":\"Shivani Gour, Abhijit Mukherjee, Kantesh Balani, Navdeep K. Dhami\",\"doi\":\"10.1557/s43578-024-01391-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bioactive glass 58S (BG58S) is widely recognised for its bioactivity and antibacterial properties, making it a promising material for orthopaedic implant applications. This study investigates the effects of incorporating silver (BG58S-2.5Ag) and cerium oxide (BG58S-5C) into BG58S on early-stage bacterial adhesion and subsequent bacterial growth inhibition. Using a high-intensity ball milling approach, BG58S was modified with 5% cerium oxide (CeO<sub>2</sub>) and 2.5% silver (Ag) nanoparticles to create homogeneous BG58S-2.5Ag and BG58S-5C nanocomposites. Custom-made biomineral probes were employed to measure the bacterial adhesion within one second of contact with Gram-negative <i>Escherichia coli</i> and Gram-positive <i>Staphylococcus aureus</i>, using Atomic Force Microscopy (AFM). The results demonstrated that BG58S-2.5Ag showed significantly stronger transient adhesion to bacteria compared to BG58S, leading to a more effective long-term antibacterial response. Additionally, it was observed that the antibacterial effect of Ag commenced within one second of contact. These findings indicate a potential correlation between the rate of bond strengthening and cell wall penetration. This study highlights the potential for enhancing the effectiveness of antibacterial implant surfaces for various biomaterial applications.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01391-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01391-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物活性玻璃 58S (BG58S) 因其生物活性和抗菌特性而广受认可,是一种很有前景的骨科植入材料。本研究探讨了在 BG58S 中加入银(BG58S-2.5Ag)和氧化铈(BG58S-5C)对早期细菌粘附和随后细菌生长抑制的影响。采用高强度球磨方法,用 5%的氧化铈(CeO2)和 2.5% 的银(Ag)纳米粒子对 BG58S 进行改性,以生成均匀的 BG58S-2.5Ag 和 BG58S-5C 纳米复合材料。利用原子力显微镜(AFM)测量了定制生物矿物探针与革兰氏阴性大肠杆菌和革兰氏阳性金黄色葡萄球菌接触一秒钟内的细菌粘附力。结果表明,与 BG58S 相比,BG58S-2.5Ag 对细菌的瞬时粘附力明显更强,从而产生了更有效的长期抗菌反应。此外,还观察到 Ag 的抗菌作用在接触后一秒钟内就开始了。这些研究结果表明,粘合力的增强速度与细胞壁的穿透力之间存在潜在的相关性。这项研究强调了在各种生物材料应用中提高抗菌植入物表面有效性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic force microscopic investigations of transient early-stage bacterial adhesion and antibacterial activity of silver and ceria modified bioactive glass

Bioactive glass 58S (BG58S) is widely recognised for its bioactivity and antibacterial properties, making it a promising material for orthopaedic implant applications. This study investigates the effects of incorporating silver (BG58S-2.5Ag) and cerium oxide (BG58S-5C) into BG58S on early-stage bacterial adhesion and subsequent bacterial growth inhibition. Using a high-intensity ball milling approach, BG58S was modified with 5% cerium oxide (CeO2) and 2.5% silver (Ag) nanoparticles to create homogeneous BG58S-2.5Ag and BG58S-5C nanocomposites. Custom-made biomineral probes were employed to measure the bacterial adhesion within one second of contact with Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, using Atomic Force Microscopy (AFM). The results demonstrated that BG58S-2.5Ag showed significantly stronger transient adhesion to bacteria compared to BG58S, leading to a more effective long-term antibacterial response. Additionally, it was observed that the antibacterial effect of Ag commenced within one second of contact. These findings indicate a potential correlation between the rate of bond strengthening and cell wall penetration. This study highlights the potential for enhancing the effectiveness of antibacterial implant surfaces for various biomaterial applications.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
期刊最新文献
Effect of Co concentration on cation distribution and magnetic and magneto-optical properties of CoxZn1-xFe2O4 nanoparticles synthesized with citrate precursor method Fabrication and characterization of nanocomposite hydrogel based N-succinyl chitosan/oxidized tragacanth gum/silver nanoparticles for biomedical materials Development of a processing route for the fabrication of thin hierarchically porous copper self-standing structure using direct ink writing and sintering for electrochemical energy storage application Rapidly synthesis of AuM (M = Pt, Pd) hexagonals/graphene quantum dots nanostructures and their application for non-enzyme hydrogen peroxide detection Nanocomposites Fe2O3/PNR loaded partially reduced rGO/GCE as an electrochemical probe for selective determination of uric acid and dopamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1