{"title":"具有超薄铂壳的 Fcc/hcp 铂镍异质结构合金纳米晶体用于提高氢气进化反应的催化性能","authors":"Tianchun Cheng, Zhi Wang, Shuiyang Fang, Hui Jin, Chongzhi Zhu, Shuangyang Zhao, Guilin Zhuang, Qiaoli Chen, Yihan Zhu","doi":"10.1007/s12274-024-6872-2","DOIUrl":null,"url":null,"abstract":"<div><p>To ensure the green and sustainable advancement of hydrogen energy, there is a critical need for the development of a cost-effective catalyst to address the sluggish kinetics of water electrolysis under alkaline conditions. An approach to achieve this is by constructing ultrathin Pt shell-structured catalysts that offer enhanced electrocatalytic hydrogen evolution reaction performance through modulation of the inner core while minimizing costs. Herein, an ultrathin Pt shell catalyst with an inner core consisting of a PtNi face-centered cubic and hexagonal-close-packed mixed-phase interface (named PtNi-mix) is synthesized through a pre-synthesis method followed by post-acid etching process. Encouragingly, the PtNi-mix catalyst only requires 12.9 mV overpotential to achieve a current density of 10 mA·cm<sup>-2</sup> in 1 M KOH, which is much lower than that of the commercial 20 wt.% Pt/C catalyst (71.2 mV). Also, it possesses a high mass activity (7.2 A·mg<sup>-1</sup>) at an overpotential of 70 mV, which is 9 times higher than that of the commercial 20 wt.% Pt/C catalyst. Additionally, the performance of the PtNi-mix catalyst remains almost unchanged after 10,000 cyclic voltammetry tests, indicating that the catalyst exhibits excellent stability.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9822 - 9829"},"PeriodicalIF":9.5000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fcc/hcp PtNi heterostructured alloy nanocrystals with ultrathin Pt shell for enhanced catalytic performance towards hydrogen evolution reaction\",\"authors\":\"Tianchun Cheng, Zhi Wang, Shuiyang Fang, Hui Jin, Chongzhi Zhu, Shuangyang Zhao, Guilin Zhuang, Qiaoli Chen, Yihan Zhu\",\"doi\":\"10.1007/s12274-024-6872-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To ensure the green and sustainable advancement of hydrogen energy, there is a critical need for the development of a cost-effective catalyst to address the sluggish kinetics of water electrolysis under alkaline conditions. An approach to achieve this is by constructing ultrathin Pt shell-structured catalysts that offer enhanced electrocatalytic hydrogen evolution reaction performance through modulation of the inner core while minimizing costs. Herein, an ultrathin Pt shell catalyst with an inner core consisting of a PtNi face-centered cubic and hexagonal-close-packed mixed-phase interface (named PtNi-mix) is synthesized through a pre-synthesis method followed by post-acid etching process. Encouragingly, the PtNi-mix catalyst only requires 12.9 mV overpotential to achieve a current density of 10 mA·cm<sup>-2</sup> in 1 M KOH, which is much lower than that of the commercial 20 wt.% Pt/C catalyst (71.2 mV). Also, it possesses a high mass activity (7.2 A·mg<sup>-1</sup>) at an overpotential of 70 mV, which is 9 times higher than that of the commercial 20 wt.% Pt/C catalyst. Additionally, the performance of the PtNi-mix catalyst remains almost unchanged after 10,000 cyclic voltammetry tests, indicating that the catalyst exhibits excellent stability.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 11\",\"pages\":\"9822 - 9829\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6872-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6872-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Fcc/hcp PtNi heterostructured alloy nanocrystals with ultrathin Pt shell for enhanced catalytic performance towards hydrogen evolution reaction
To ensure the green and sustainable advancement of hydrogen energy, there is a critical need for the development of a cost-effective catalyst to address the sluggish kinetics of water electrolysis under alkaline conditions. An approach to achieve this is by constructing ultrathin Pt shell-structured catalysts that offer enhanced electrocatalytic hydrogen evolution reaction performance through modulation of the inner core while minimizing costs. Herein, an ultrathin Pt shell catalyst with an inner core consisting of a PtNi face-centered cubic and hexagonal-close-packed mixed-phase interface (named PtNi-mix) is synthesized through a pre-synthesis method followed by post-acid etching process. Encouragingly, the PtNi-mix catalyst only requires 12.9 mV overpotential to achieve a current density of 10 mA·cm-2 in 1 M KOH, which is much lower than that of the commercial 20 wt.% Pt/C catalyst (71.2 mV). Also, it possesses a high mass activity (7.2 A·mg-1) at an overpotential of 70 mV, which is 9 times higher than that of the commercial 20 wt.% Pt/C catalyst. Additionally, the performance of the PtNi-mix catalyst remains almost unchanged after 10,000 cyclic voltammetry tests, indicating that the catalyst exhibits excellent stability.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.