Fotis Drakopoulos, Yixun Liu, Kevin Garner, Nikos Chrisochoides
{"title":"多组织医学图像计算模拟的图像-网格转换方法","authors":"Fotis Drakopoulos, Yixun Liu, Kevin Garner, Nikos Chrisochoides","doi":"10.1007/s00366-024-02023-w","DOIUrl":null,"url":null,"abstract":"<p>Converting a three-dimensional medical image into a 3D mesh that satisfies both the quality and fidelity constraints of predictive simulations and image-guided surgical procedures remains a critical problem. Presented is an image-to-mesh conversion method called CBC3D. It first discretizes a segmented image by generating an adaptive Body-Centered Cubic mesh of high-quality elements. Next, the tetrahedral mesh is converted into a mixed element mesh of tetrahedra, pentahedra, and hexahedra to decrease element count while maintaining quality. Finally, the mesh surfaces are deformed to their corresponding physical image boundaries, improving the mesh’s fidelity. The deformation scheme builds upon the ITK open-source library and is based on the concept of energy minimization, relying on a multi-material point-based registration. It uses non-connectivity patterns to implicitly control the number of extracted feature points needed for the registration and, thus, adjusts the trade-off between the achieved mesh fidelity and the deformation speed. We compare CBC3D with four widely used and state-of-the-art homegrown image-to-mesh conversion methods from industry and academia. Results indicate that the CBC3D meshes: (1) achieve high fidelity, (2) keep the element count reasonably low, and (3) exhibit good element quality.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image-to-mesh conversion method for multi-tissue medical image computing simulations\",\"authors\":\"Fotis Drakopoulos, Yixun Liu, Kevin Garner, Nikos Chrisochoides\",\"doi\":\"10.1007/s00366-024-02023-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Converting a three-dimensional medical image into a 3D mesh that satisfies both the quality and fidelity constraints of predictive simulations and image-guided surgical procedures remains a critical problem. Presented is an image-to-mesh conversion method called CBC3D. It first discretizes a segmented image by generating an adaptive Body-Centered Cubic mesh of high-quality elements. Next, the tetrahedral mesh is converted into a mixed element mesh of tetrahedra, pentahedra, and hexahedra to decrease element count while maintaining quality. Finally, the mesh surfaces are deformed to their corresponding physical image boundaries, improving the mesh’s fidelity. The deformation scheme builds upon the ITK open-source library and is based on the concept of energy minimization, relying on a multi-material point-based registration. It uses non-connectivity patterns to implicitly control the number of extracted feature points needed for the registration and, thus, adjusts the trade-off between the achieved mesh fidelity and the deformation speed. We compare CBC3D with four widely used and state-of-the-art homegrown image-to-mesh conversion methods from industry and academia. Results indicate that the CBC3D meshes: (1) achieve high fidelity, (2) keep the element count reasonably low, and (3) exhibit good element quality.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-02023-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02023-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Image-to-mesh conversion method for multi-tissue medical image computing simulations
Converting a three-dimensional medical image into a 3D mesh that satisfies both the quality and fidelity constraints of predictive simulations and image-guided surgical procedures remains a critical problem. Presented is an image-to-mesh conversion method called CBC3D. It first discretizes a segmented image by generating an adaptive Body-Centered Cubic mesh of high-quality elements. Next, the tetrahedral mesh is converted into a mixed element mesh of tetrahedra, pentahedra, and hexahedra to decrease element count while maintaining quality. Finally, the mesh surfaces are deformed to their corresponding physical image boundaries, improving the mesh’s fidelity. The deformation scheme builds upon the ITK open-source library and is based on the concept of energy minimization, relying on a multi-material point-based registration. It uses non-connectivity patterns to implicitly control the number of extracted feature points needed for the registration and, thus, adjusts the trade-off between the achieved mesh fidelity and the deformation speed. We compare CBC3D with four widely used and state-of-the-art homegrown image-to-mesh conversion methods from industry and academia. Results indicate that the CBC3D meshes: (1) achieve high fidelity, (2) keep the element count reasonably low, and (3) exhibit good element quality.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.