增强了对时间数据立方体查询的日历支持

IF 2.1 3区 地球科学 Q2 GEOGRAPHY Transactions in GIS Pub Date : 2024-07-30 DOI:10.1111/tgis.13215
Peter Baumann, Bang Pham Huu, Dimitar Misev, Vlad Merticariu
{"title":"增强了对时间数据立方体查询的日历支持","authors":"Peter Baumann, Bang Pham Huu, Dimitar Misev, Vlad Merticariu","doi":"10.1111/tgis.13215","DOIUrl":null,"url":null,"abstract":"A significant share of our data are timeseries. Time can occur as the single dimension, or further (such as spatial) dimensions can be present as well, leading to multidimensional data such as 3D <jats:italic>x</jats:italic>/<jats:italic>y</jats:italic>/<jats:italic>t</jats:italic> satellite image timeseries or 4D <jats:italic>x</jats:italic>/<jats:italic>y</jats:italic>/<jats:italic>z</jats:italic>/<jats:italic>t</jats:italic> atmospheric simulations like weather forecasts. However, no user would like to count “seconds since epoch,” rather we all prefer calendar notation. Libraries, SQL, etc. support calendar arithmetics, yet more advanced functionality is needed. Instead of demoting advanced calendar functionality to low‐level coding, it seems desirable to have semantic support for calendars at high‐level, declarative query level. We present a conceptual framework for temporal modeling which allows the expression of a wide range of temporal queries. It smoothly enhances existing calendar handling by adding two new data and query description parameters, period of validity, and granularity. While our work is embedded in spatio‐temporal geo services, it can be incorporated in a non‐breaking manner in any environment needing calendar addressing. The concepts are implemented in an Array DBMS operational on several Petabytes of Earth datacubes.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":"153 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced calendar support for temporal datacube queries\",\"authors\":\"Peter Baumann, Bang Pham Huu, Dimitar Misev, Vlad Merticariu\",\"doi\":\"10.1111/tgis.13215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant share of our data are timeseries. Time can occur as the single dimension, or further (such as spatial) dimensions can be present as well, leading to multidimensional data such as 3D <jats:italic>x</jats:italic>/<jats:italic>y</jats:italic>/<jats:italic>t</jats:italic> satellite image timeseries or 4D <jats:italic>x</jats:italic>/<jats:italic>y</jats:italic>/<jats:italic>z</jats:italic>/<jats:italic>t</jats:italic> atmospheric simulations like weather forecasts. However, no user would like to count “seconds since epoch,” rather we all prefer calendar notation. Libraries, SQL, etc. support calendar arithmetics, yet more advanced functionality is needed. Instead of demoting advanced calendar functionality to low‐level coding, it seems desirable to have semantic support for calendars at high‐level, declarative query level. We present a conceptual framework for temporal modeling which allows the expression of a wide range of temporal queries. It smoothly enhances existing calendar handling by adding two new data and query description parameters, period of validity, and granularity. While our work is embedded in spatio‐temporal geo services, it can be incorporated in a non‐breaking manner in any environment needing calendar addressing. The concepts are implemented in an Array DBMS operational on several Petabytes of Earth datacubes.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13215\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13215","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

我们的数据中有很大一部分是时间序列。时间可以是单一维度,也可以是其他维度(如空间维度),从而产生多维数据,如三维 x/y/t 卫星图像时间序列或四维 x/y/z/t 大气模拟(如天气预报)。然而,没有用户会喜欢计算 "自纪元以来的秒数",相反,我们都更喜欢日历符号。库、SQL 等都支持日历运算,但还需要更高级的功能。与其将高级日历功能降级为低级编码,不如在高级声明式查询级别为日历提供语义支持。我们提出了一个时态建模概念框架,它允许表达各种时态查询。它通过添加两个新的数据和查询描述参数(有效期和粒度),平滑地增强了现有的日历处理功能。虽然我们的工作嵌入了时空地理服务,但它可以以非破坏性的方式纳入任何需要日历处理的环境中。这些概念是在一个阵列数据库管理系统(Array DBMS)中实现的,该系统可在数百亿字节的地球数据集上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced calendar support for temporal datacube queries
A significant share of our data are timeseries. Time can occur as the single dimension, or further (such as spatial) dimensions can be present as well, leading to multidimensional data such as 3D x/y/t satellite image timeseries or 4D x/y/z/t atmospheric simulations like weather forecasts. However, no user would like to count “seconds since epoch,” rather we all prefer calendar notation. Libraries, SQL, etc. support calendar arithmetics, yet more advanced functionality is needed. Instead of demoting advanced calendar functionality to low‐level coding, it seems desirable to have semantic support for calendars at high‐level, declarative query level. We present a conceptual framework for temporal modeling which allows the expression of a wide range of temporal queries. It smoothly enhances existing calendar handling by adding two new data and query description parameters, period of validity, and granularity. While our work is embedded in spatio‐temporal geo services, it can be incorporated in a non‐breaking manner in any environment needing calendar addressing. The concepts are implemented in an Array DBMS operational on several Petabytes of Earth datacubes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions in GIS
Transactions in GIS GEOGRAPHY-
CiteScore
4.60
自引率
8.30%
发文量
116
期刊介绍: Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business
期刊最新文献
Knowledge‐Guided Automated Cartographic Generalization Process Construction: A Case Study Based on Map Analysis of Public Maps of China City Influence Network: Mining and Analyzing the Influence of Chinese Cities Based on Social Media PyGRF: An Improved Python Geographical Random Forest Model and Case Studies in Public Health and Natural Disasters Neural Sensing: Toward a New Approach to Understanding Emotional Responses to Place Construction of Earth Observation Knowledge Hub Based on Knowledge Graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1