三角汤庞培-豪斯多夫距离的级联上界

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Graphics Forum Pub Date : 2024-07-31 DOI:10.1111/cgf.15129
Leonardo Sacht, Alec Jacobson
{"title":"三角汤庞培-豪斯多夫距离的级联上界","authors":"Leonardo Sacht,&nbsp;Alec Jacobson","doi":"10.1111/cgf.15129","DOIUrl":null,"url":null,"abstract":"<p>We propose a new method to accurately approximate the Pompeiu-Hausdorff distance from a triangle soup A to another triangle soup B up to a given tolerance. Based on lower and upper bound computations, we discard triangles from A that do not contain the maximizer of the distance to B and subdivide the others for further processing. In contrast to previous methods, we use four upper bounds instead of only one, three of which newly proposed by us. Many triangles are discarded using the simpler bounds, while the most difficult cases are dealt with by the other bounds. Exhaustive testing determines the best ordering of the four upper bounds. A collection of experiments shows that our method is faster than all previous accurate methods in the literature.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cascading upper bounds for triangle soup Pompeiu-Hausdorff distance\",\"authors\":\"Leonardo Sacht,&nbsp;Alec Jacobson\",\"doi\":\"10.1111/cgf.15129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a new method to accurately approximate the Pompeiu-Hausdorff distance from a triangle soup A to another triangle soup B up to a given tolerance. Based on lower and upper bound computations, we discard triangles from A that do not contain the maximizer of the distance to B and subdivide the others for further processing. In contrast to previous methods, we use four upper bounds instead of only one, three of which newly proposed by us. Many triangles are discarded using the simpler bounds, while the most difficult cases are dealt with by the other bounds. Exhaustive testing determines the best ordering of the four upper bounds. A collection of experiments shows that our method is faster than all previous accurate methods in the literature.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15129\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15129","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新方法,可以在给定的容差范围内精确地近似计算从三角形汤 A 到另一个三角形汤 B 的庞培-豪斯多夫距离。根据下界和上界计算,我们从 A 中舍弃不包含到 B 的最大距离的三角形,并细分其他三角形进行进一步处理。与之前的方法不同,我们使用了四个上界,而不是只有一个,其中三个是我们新提出的。使用较简单的上界可以舍弃许多三角形,而使用其他上界则可以处理最困难的情况。详尽的测试确定了四个上限的最佳排序。一系列实验表明,我们的方法比以往文献中的所有精确方法都要快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cascading upper bounds for triangle soup Pompeiu-Hausdorff distance

We propose a new method to accurately approximate the Pompeiu-Hausdorff distance from a triangle soup A to another triangle soup B up to a given tolerance. Based on lower and upper bound computations, we discard triangles from A that do not contain the maximizer of the distance to B and subdivide the others for further processing. In contrast to previous methods, we use four upper bounds instead of only one, three of which newly proposed by us. Many triangles are discarded using the simpler bounds, while the most difficult cases are dealt with by the other bounds. Exhaustive testing determines the best ordering of the four upper bounds. A collection of experiments shows that our method is faster than all previous accurate methods in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
期刊最新文献
DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition Front Matter LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud 𝒢-Style: Stylized Gaussian Splatting iShapEditing: Intelligent Shape Editing with Diffusion Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1