Bowen Miao, Xiaoting Shang, Kai Yang, Bin Jia, Guoqing Zhang
{"title":"托盘集合系统中位置-库存问题的模型和算法","authors":"Bowen Miao, Xiaoting Shang, Kai Yang, Bin Jia, Guoqing Zhang","doi":"10.1108/k-03-2024-0695","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper studies the location-inventory problem (LIP) in pallet pooling systems to improve resource utilization and save logistics costs, which is a new extension of the classical LIP and also an application of the LIP in pallet pooling systems.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A mixed-integer linear programming is established, considering the location problem of pallet pooling centers (PPCs) with multi-level capacity, multi-period inventory management and bi-directional logistics. Owing to the computational complexity of the problem, a hybrid genetic algorithm (GA) is then proposed, where three local searching strategies are designed to improve the problem-solving efficiency. Lastly, numerical experiments are carried out to validate the feasibility of the established model and the efficiency of the proposed algorithm.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results of numerical experiments show that (1) the proposed model can obtain the integrated optimal solution of the location problem and inventory management, which is better than the two-stage model and the model with single-level capacity; (2) the total cost and network structure are sensitive to the number of PPCs, the unit inventory cost, the proportion of repairable pallets and the fixed transportation cost and (3) the proposed hybrid GA shows good performance in terms of solution quality and computational time.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The established model extends the classical LIP by considering more practical factors, and the proposed algorithm provides support for solving large-scale problems. In addition, this study can also offer valuable decision support for managers in pallet pooling systems.</p><!--/ Abstract__block -->","PeriodicalId":49930,"journal":{"name":"Kybernetes","volume":"166 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model and algorithm for the location-inventory problem in pallet pooling systems\",\"authors\":\"Bowen Miao, Xiaoting Shang, Kai Yang, Bin Jia, Guoqing Zhang\",\"doi\":\"10.1108/k-03-2024-0695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper studies the location-inventory problem (LIP) in pallet pooling systems to improve resource utilization and save logistics costs, which is a new extension of the classical LIP and also an application of the LIP in pallet pooling systems.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>A mixed-integer linear programming is established, considering the location problem of pallet pooling centers (PPCs) with multi-level capacity, multi-period inventory management and bi-directional logistics. Owing to the computational complexity of the problem, a hybrid genetic algorithm (GA) is then proposed, where three local searching strategies are designed to improve the problem-solving efficiency. Lastly, numerical experiments are carried out to validate the feasibility of the established model and the efficiency of the proposed algorithm.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The results of numerical experiments show that (1) the proposed model can obtain the integrated optimal solution of the location problem and inventory management, which is better than the two-stage model and the model with single-level capacity; (2) the total cost and network structure are sensitive to the number of PPCs, the unit inventory cost, the proportion of repairable pallets and the fixed transportation cost and (3) the proposed hybrid GA shows good performance in terms of solution quality and computational time.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The established model extends the classical LIP by considering more practical factors, and the proposed algorithm provides support for solving large-scale problems. In addition, this study can also offer valuable decision support for managers in pallet pooling systems.</p><!--/ Abstract__block -->\",\"PeriodicalId\":49930,\"journal\":{\"name\":\"Kybernetes\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kybernetes\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/k-03-2024-0695\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kybernetes","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/k-03-2024-0695","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Model and algorithm for the location-inventory problem in pallet pooling systems
Purpose
This paper studies the location-inventory problem (LIP) in pallet pooling systems to improve resource utilization and save logistics costs, which is a new extension of the classical LIP and also an application of the LIP in pallet pooling systems.
Design/methodology/approach
A mixed-integer linear programming is established, considering the location problem of pallet pooling centers (PPCs) with multi-level capacity, multi-period inventory management and bi-directional logistics. Owing to the computational complexity of the problem, a hybrid genetic algorithm (GA) is then proposed, where three local searching strategies are designed to improve the problem-solving efficiency. Lastly, numerical experiments are carried out to validate the feasibility of the established model and the efficiency of the proposed algorithm.
Findings
The results of numerical experiments show that (1) the proposed model can obtain the integrated optimal solution of the location problem and inventory management, which is better than the two-stage model and the model with single-level capacity; (2) the total cost and network structure are sensitive to the number of PPCs, the unit inventory cost, the proportion of repairable pallets and the fixed transportation cost and (3) the proposed hybrid GA shows good performance in terms of solution quality and computational time.
Originality/value
The established model extends the classical LIP by considering more practical factors, and the proposed algorithm provides support for solving large-scale problems. In addition, this study can also offer valuable decision support for managers in pallet pooling systems.
期刊介绍:
Kybernetes is the official journal of the UNESCO recognized World Organisation of Systems and Cybernetics (WOSC), and The Cybernetics Society.
The journal is an important forum for the exchange of knowledge and information among all those who are interested in cybernetics and systems thinking.
It is devoted to improvement in the understanding of human, social, organizational, technological and sustainable aspects of society and their interdependencies. It encourages consideration of a range of theories, methodologies and approaches, and their transdisciplinary links. The spirit of the journal comes from Norbert Wiener''s understanding of cybernetics as "The Human Use of Human Beings." Hence, Kybernetes strives for examination and analysis, based on a systemic frame of reference, of burning issues of ecosystems, society, organizations, businesses and human behavior.