一种基于乙烯-丙烯酸甲酯共聚物/氯丁橡胶热塑性硫化弹性体的新型聚合物,具有快速热响应形状记忆特性

IF 3.6 4区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES Journal of Thermoplastic Composite Materials Pub Date : 2024-07-30 DOI:10.1177/08927057241270891
Dazhi Zhu, Wanwu Ma, Jianqiang Chu, Zhiyuan Gong, Zhaobo Wang
{"title":"一种基于乙烯-丙烯酸甲酯共聚物/氯丁橡胶热塑性硫化弹性体的新型聚合物,具有快速热响应形状记忆特性","authors":"Dazhi Zhu, Wanwu Ma, Jianqiang Chu, Zhiyuan Gong, Zhaobo Wang","doi":"10.1177/08927057241270891","DOIUrl":null,"url":null,"abstract":"A simple and effective strategy for preparing thermo-responsive shape memory polymers (TSMPs) can be designed where the novel TSMPs based on ethylene-methyl acrylate copolymer (EMA) and chlorinated polyethylene rubber (CR) thermoplastic vulcanizates (TPVs) were prepared using dynamic vulcanization. The morphology of the EMA/CR TPVs exhibited a sea-island structure obviously; moreover, the EMA served as the continuous phase and mainly provided the shape fixation (SF) capability of the blend, while the highly elastic CR was acted as the dispersed phase and provided the primary driving force during the shape recovery (SR) process. The SF and SR behaviors of the EMA/CR TPVs can be effectively controlled by varying the weight ratio of EMA/CR blends. Increasing the weight ratio of EMA/CR, the SF% of the EMA/CR TPVs was enhanced while the SR% was decreased remarkably. The shape memory behaviors of EMA/CR TPVs were significantly influenced by temperature. Notably, when the fixation and recovery temperatures were all set at 95°C, both the SF% and SR% of the EMA/CR TPVs with a weight ratio of 80/20 exceeded 95%, and the SR time was 15∼20s, demonstrating the excellent shape memory property.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel polymer based on ethylene-methyl acrylate copolymer/chloroprene rubber thermoplastic vulcanizates with rapid thermo-responsive shape memory property\",\"authors\":\"Dazhi Zhu, Wanwu Ma, Jianqiang Chu, Zhiyuan Gong, Zhaobo Wang\",\"doi\":\"10.1177/08927057241270891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple and effective strategy for preparing thermo-responsive shape memory polymers (TSMPs) can be designed where the novel TSMPs based on ethylene-methyl acrylate copolymer (EMA) and chlorinated polyethylene rubber (CR) thermoplastic vulcanizates (TPVs) were prepared using dynamic vulcanization. The morphology of the EMA/CR TPVs exhibited a sea-island structure obviously; moreover, the EMA served as the continuous phase and mainly provided the shape fixation (SF) capability of the blend, while the highly elastic CR was acted as the dispersed phase and provided the primary driving force during the shape recovery (SR) process. The SF and SR behaviors of the EMA/CR TPVs can be effectively controlled by varying the weight ratio of EMA/CR blends. Increasing the weight ratio of EMA/CR, the SF% of the EMA/CR TPVs was enhanced while the SR% was decreased remarkably. The shape memory behaviors of EMA/CR TPVs were significantly influenced by temperature. Notably, when the fixation and recovery temperatures were all set at 95°C, both the SF% and SR% of the EMA/CR TPVs with a weight ratio of 80/20 exceeded 95%, and the SR time was 15∼20s, demonstrating the excellent shape memory property.\",\"PeriodicalId\":17446,\"journal\":{\"name\":\"Journal of Thermoplastic Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermoplastic Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/08927057241270891\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241270891","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

利用动态硫化法制备了基于乙烯-丙烯酸甲酯共聚物(EMA)和氯化聚乙烯橡胶(CR)热塑性硫化弹性体(TPVs)的新型热响应形状记忆聚合物(TSMPs),设计了一种简单有效的热响应形状记忆聚合物(TSMPs)制备策略。EMA/CR 热塑性硫化弹性体的形貌明显呈现海岛结构;此外,EMA 作为连续相,主要提供共混物的形状固定(SF)能力,而高弹性 CR 作为分散相,在形状恢复(SR)过程中提供主要驱动力。通过改变 EMA/CR 共混物的重量比,可以有效控制 EMA/CR 热塑性硫化弹性体的 SF 和 SR 行为。随着 EMA/CR 重量比的增加,EMA/CR 热塑性硫化弹性体的 SF% 得到提高,而 SR% 则明显下降。EMA/CR 热塑性硫化弹性体的形状记忆行为受温度的影响很大。值得注意的是,当固定温度和恢复温度都设定为 95°C 时,重量比为 80/20 的 EMA/CR 热塑性硫化弹性体的 SF% 和 SR% 都超过了 95%,SR 时间为 15∼20s,显示出优异的形状记忆特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel polymer based on ethylene-methyl acrylate copolymer/chloroprene rubber thermoplastic vulcanizates with rapid thermo-responsive shape memory property
A simple and effective strategy for preparing thermo-responsive shape memory polymers (TSMPs) can be designed where the novel TSMPs based on ethylene-methyl acrylate copolymer (EMA) and chlorinated polyethylene rubber (CR) thermoplastic vulcanizates (TPVs) were prepared using dynamic vulcanization. The morphology of the EMA/CR TPVs exhibited a sea-island structure obviously; moreover, the EMA served as the continuous phase and mainly provided the shape fixation (SF) capability of the blend, while the highly elastic CR was acted as the dispersed phase and provided the primary driving force during the shape recovery (SR) process. The SF and SR behaviors of the EMA/CR TPVs can be effectively controlled by varying the weight ratio of EMA/CR blends. Increasing the weight ratio of EMA/CR, the SF% of the EMA/CR TPVs was enhanced while the SR% was decreased remarkably. The shape memory behaviors of EMA/CR TPVs were significantly influenced by temperature. Notably, when the fixation and recovery temperatures were all set at 95°C, both the SF% and SR% of the EMA/CR TPVs with a weight ratio of 80/20 exceeded 95%, and the SR time was 15∼20s, demonstrating the excellent shape memory property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermoplastic Composite Materials
Journal of Thermoplastic Composite Materials 工程技术-材料科学:复合
CiteScore
8.00
自引率
18.20%
发文量
104
审稿时长
5.9 months
期刊介绍: The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Investigation of sizing materials for carbon fiber reinforced thermoplastic composites Exploring the strain rate influence on shear yield behavior of acrylonitrile-butadiene-styrene: Experimental and numerical study Thermoelastic analysis of FG-CNTRC cylindrical shells with various boundary conditions and temperature-dependent characteristics using quasi-3D higher-order shear deformation theory Influences of various thermoplastic veil interleaves upon carbon fiber-reinforced composites subjected to low-velocity impact Modelling and fabrication of flexible strain sensor using the 3D printing technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1