Xiao Wang, Zizhi Ying, En Hu, Juntao Ma, Xiaoqing Zhang, Tengfei Ma, Xiaohong Wang
{"title":"Al-Ti-B-Er 对超高强度铝合金微观结构和性能的影响","authors":"Xiao Wang, Zizhi Ying, En Hu, Juntao Ma, Xiaoqing Zhang, Tengfei Ma, Xiaohong Wang","doi":"10.3390/cryst14080695","DOIUrl":null,"url":null,"abstract":"To refine the grain size and improve the mechanical properties of ultrahigh-strength aluminum alloy (Al-10Zn-1.9Mg-1.6Cu-0.12Zr), the Al-Ti-B-Er grain refiner was prepared by the melt reaction method using the aluminum melt and Al + Ti + B precursor. The results exhibit that the Al-Ti-B-Er grain refiner is mainly composed of a block TiAl3 phase, and loose agglomerated nano-sized TiB2 and Al3Er phases. The microstructure of ultrahigh-strength aluminum is significantly affected by the Al-Ti-B-Er refiner, which changes from dendrite to equiaxial grain with increasing Al-Ti-B-Er content, and the size of the eutectic phase is significantly refined. The high-efficiency refinement of Al-Ti-B-Er is due to Er promoting the uniform distribution of TiAl3 particles and the formation of loose agglomerated nano-sized TiB2 particles. The optimal addition content of Al-Ti-B-Er into ultrahigh-strength aluminum alloys is 1 wt%, whose grain size is approximately 40 µm. Additionally, the strength and ductility of ultrahigh-strength aluminum alloys are simultaneously improved by adding 1wt% Al-Ti-B-Er after the T6 treatment, reaching 756 MPa and 20%, respectively. This enhancement in strength and ductility is mainly attributed to grain refinement and the eutectic phase refinement.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"123 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Al-Ti-B-Er on the Microstructure and Properties of Ultrahigh-Strength Aluminum Alloy\",\"authors\":\"Xiao Wang, Zizhi Ying, En Hu, Juntao Ma, Xiaoqing Zhang, Tengfei Ma, Xiaohong Wang\",\"doi\":\"10.3390/cryst14080695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To refine the grain size and improve the mechanical properties of ultrahigh-strength aluminum alloy (Al-10Zn-1.9Mg-1.6Cu-0.12Zr), the Al-Ti-B-Er grain refiner was prepared by the melt reaction method using the aluminum melt and Al + Ti + B precursor. The results exhibit that the Al-Ti-B-Er grain refiner is mainly composed of a block TiAl3 phase, and loose agglomerated nano-sized TiB2 and Al3Er phases. The microstructure of ultrahigh-strength aluminum is significantly affected by the Al-Ti-B-Er refiner, which changes from dendrite to equiaxial grain with increasing Al-Ti-B-Er content, and the size of the eutectic phase is significantly refined. The high-efficiency refinement of Al-Ti-B-Er is due to Er promoting the uniform distribution of TiAl3 particles and the formation of loose agglomerated nano-sized TiB2 particles. The optimal addition content of Al-Ti-B-Er into ultrahigh-strength aluminum alloys is 1 wt%, whose grain size is approximately 40 µm. Additionally, the strength and ductility of ultrahigh-strength aluminum alloys are simultaneously improved by adding 1wt% Al-Ti-B-Er after the T6 treatment, reaching 756 MPa and 20%, respectively. This enhancement in strength and ductility is mainly attributed to grain refinement and the eutectic phase refinement.\",\"PeriodicalId\":10855,\"journal\":{\"name\":\"Crystals\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14080695\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14080695","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
摘要
为了细化超高强度铝合金(Al-10Zn-1.9Mg-1.6Cu-0.12Zr)的晶粒尺寸并改善其机械性能,研究人员利用铝熔体和 Al + Ti + B 前驱体,采用熔融反应法制备了 Al-Ti-B-Er 晶粒细化剂。结果表明,Al-Ti-B-Er 晶粒细化剂主要由块状 TiAl3 相、疏松团聚的纳米级 TiB2 相和 Al3Er 相组成。Al-Ti-B-Er 精炼剂对超高强度铝的微观结构影响显著,随着 Al-Ti-B-Er 含量的增加,铝的微观结构由树枝状晶粒转变为等轴晶粒,共晶相的尺寸也显著细化。Al-Ti-B-Er 的高效细化是由于 Er 促进了 TiAl3 颗粒的均匀分布和疏松团聚纳米级 TiB2 颗粒的形成。超高强度铝合金中 Al-Ti-B-Er 的最佳添加量为 1 wt%,其晶粒大小约为 40 µm。此外,在 T6 处理后添加 1wt% 的 Al-Ti-B-Er,可同时提高超高强度铝合金的强度和延展性,分别达到 756 兆帕和 20%。强度和延展性的提高主要归因于晶粒细化和共晶相细化。
Effect of Al-Ti-B-Er on the Microstructure and Properties of Ultrahigh-Strength Aluminum Alloy
To refine the grain size and improve the mechanical properties of ultrahigh-strength aluminum alloy (Al-10Zn-1.9Mg-1.6Cu-0.12Zr), the Al-Ti-B-Er grain refiner was prepared by the melt reaction method using the aluminum melt and Al + Ti + B precursor. The results exhibit that the Al-Ti-B-Er grain refiner is mainly composed of a block TiAl3 phase, and loose agglomerated nano-sized TiB2 and Al3Er phases. The microstructure of ultrahigh-strength aluminum is significantly affected by the Al-Ti-B-Er refiner, which changes from dendrite to equiaxial grain with increasing Al-Ti-B-Er content, and the size of the eutectic phase is significantly refined. The high-efficiency refinement of Al-Ti-B-Er is due to Er promoting the uniform distribution of TiAl3 particles and the formation of loose agglomerated nano-sized TiB2 particles. The optimal addition content of Al-Ti-B-Er into ultrahigh-strength aluminum alloys is 1 wt%, whose grain size is approximately 40 µm. Additionally, the strength and ductility of ultrahigh-strength aluminum alloys are simultaneously improved by adding 1wt% Al-Ti-B-Er after the T6 treatment, reaching 756 MPa and 20%, respectively. This enhancement in strength and ductility is mainly attributed to grain refinement and the eutectic phase refinement.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.