{"title":"改进罗丹明 B 光催化降解的金属银修饰 SnO2-Zn2SnO4 立方体纳米材料","authors":"Shuyun Huang, Huanhuan Xu, Yue Ouyang, Yun Zhou, Junwei Xu, Jianjun Liu","doi":"10.1007/s11144-024-02682-2","DOIUrl":null,"url":null,"abstract":"<p>To modify the wide bandgap and intrinsic high recombination rate of photogenerated charge carriers of Zn<sub>2</sub>SnO<sub>4</sub> photocatalysts, Ag/SnO<sub>2</sub>–Zn<sub>2</sub>SnO<sub>4</sub> composites were prepared by depositing Ag nanoparticles onto cube-shaped SnO<sub>2</sub>–Zn<sub>2</sub>SnO<sub>4</sub> nanomaterials via photoreduction. The composites were characterized by XRD, SEM, EDS, TEM, XPS, and UV–Vis DRS, and their photocatalytic degradation effect on rhodamine B (Rh B) for different Ag loadings was studied, with 10%Ag/SnO<sub>2</sub>–Zn<sub>2</sub>SnO<sub>4</sub> showing the greatest effect. The UV photocatalytic degradation rate of the Rh B solution reaches 100% after 12 min of visible light irradiation and 91% after five cycles. The free radical trapping agent experiment indicated that the active substances of Ag/SnO<sub>2</sub>–Zn<sub>2</sub>SnO<sub>4</sub> photocatalysis are ·O<sub>2</sub><sup>−</sup> and h<sup>+</sup>. Further, photoelectrochemical tests revealed the higher electron–hole separation efficiency and faster charge transfer rate of the composites, enhancing the formation of photoproduced carriers and photocatalytic activity.</p>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"56 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallic silver modified SnO2–Zn2SnO4 cube nanomaterials for improved photocatalytic degradation of rhodamine B\",\"authors\":\"Shuyun Huang, Huanhuan Xu, Yue Ouyang, Yun Zhou, Junwei Xu, Jianjun Liu\",\"doi\":\"10.1007/s11144-024-02682-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To modify the wide bandgap and intrinsic high recombination rate of photogenerated charge carriers of Zn<sub>2</sub>SnO<sub>4</sub> photocatalysts, Ag/SnO<sub>2</sub>–Zn<sub>2</sub>SnO<sub>4</sub> composites were prepared by depositing Ag nanoparticles onto cube-shaped SnO<sub>2</sub>–Zn<sub>2</sub>SnO<sub>4</sub> nanomaterials via photoreduction. The composites were characterized by XRD, SEM, EDS, TEM, XPS, and UV–Vis DRS, and their photocatalytic degradation effect on rhodamine B (Rh B) for different Ag loadings was studied, with 10%Ag/SnO<sub>2</sub>–Zn<sub>2</sub>SnO<sub>4</sub> showing the greatest effect. The UV photocatalytic degradation rate of the Rh B solution reaches 100% after 12 min of visible light irradiation and 91% after five cycles. The free radical trapping agent experiment indicated that the active substances of Ag/SnO<sub>2</sub>–Zn<sub>2</sub>SnO<sub>4</sub> photocatalysis are ·O<sub>2</sub><sup>−</sup> and h<sup>+</sup>. Further, photoelectrochemical tests revealed the higher electron–hole separation efficiency and faster charge transfer rate of the composites, enhancing the formation of photoproduced carriers and photocatalytic activity.</p>\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11144-024-02682-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11144-024-02682-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Metallic silver modified SnO2–Zn2SnO4 cube nanomaterials for improved photocatalytic degradation of rhodamine B
To modify the wide bandgap and intrinsic high recombination rate of photogenerated charge carriers of Zn2SnO4 photocatalysts, Ag/SnO2–Zn2SnO4 composites were prepared by depositing Ag nanoparticles onto cube-shaped SnO2–Zn2SnO4 nanomaterials via photoreduction. The composites were characterized by XRD, SEM, EDS, TEM, XPS, and UV–Vis DRS, and their photocatalytic degradation effect on rhodamine B (Rh B) for different Ag loadings was studied, with 10%Ag/SnO2–Zn2SnO4 showing the greatest effect. The UV photocatalytic degradation rate of the Rh B solution reaches 100% after 12 min of visible light irradiation and 91% after five cycles. The free radical trapping agent experiment indicated that the active substances of Ag/SnO2–Zn2SnO4 photocatalysis are ·O2− and h+. Further, photoelectrochemical tests revealed the higher electron–hole separation efficiency and faster charge transfer rate of the composites, enhancing the formation of photoproduced carriers and photocatalytic activity.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.