Tiantian Lu, Jinqian Feng, Jin Su, Youpan Han, Qin Guo
{"title":"基于库普曼算子稀疏近似的系统识别","authors":"Tiantian Lu, Jinqian Feng, Jin Su, Youpan Han, Qin Guo","doi":"10.1140/epjs/s11734-024-01264-6","DOIUrl":null,"url":null,"abstract":"<p>A data-driven system identification method based on the Koopman operator with sparse optimization is proposed. Koopman theory provides insights into transforming nonlinear systems into a higher-dimensional measurement function space dominated by a linear Koopman operator, which enhances system identification. The effective data-driven approach of the eigenfunctions of the Koopman operator is becoming a challenging topic. Compared with the state-of-the-art methods, this paper introduces a sparse basis selection algorithm to enhance the implementation of the compressed Koopman operator. The validity and accuracy of the method are demonstrated in a 2D Duffing system and a 3D chaotic Lorenz system. The method is also robust to noisy data.</p>","PeriodicalId":501403,"journal":{"name":"The European Physical Journal Special Topics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System identification based on sparse approximation of Koopman operator\",\"authors\":\"Tiantian Lu, Jinqian Feng, Jin Su, Youpan Han, Qin Guo\",\"doi\":\"10.1140/epjs/s11734-024-01264-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A data-driven system identification method based on the Koopman operator with sparse optimization is proposed. Koopman theory provides insights into transforming nonlinear systems into a higher-dimensional measurement function space dominated by a linear Koopman operator, which enhances system identification. The effective data-driven approach of the eigenfunctions of the Koopman operator is becoming a challenging topic. Compared with the state-of-the-art methods, this paper introduces a sparse basis selection algorithm to enhance the implementation of the compressed Koopman operator. The validity and accuracy of the method are demonstrated in a 2D Duffing system and a 3D chaotic Lorenz system. The method is also robust to noisy data.</p>\",\"PeriodicalId\":501403,\"journal\":{\"name\":\"The European Physical Journal Special Topics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal Special Topics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjs/s11734-024-01264-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Special Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjs/s11734-024-01264-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
System identification based on sparse approximation of Koopman operator
A data-driven system identification method based on the Koopman operator with sparse optimization is proposed. Koopman theory provides insights into transforming nonlinear systems into a higher-dimensional measurement function space dominated by a linear Koopman operator, which enhances system identification. The effective data-driven approach of the eigenfunctions of the Koopman operator is becoming a challenging topic. Compared with the state-of-the-art methods, this paper introduces a sparse basis selection algorithm to enhance the implementation of the compressed Koopman operator. The validity and accuracy of the method are demonstrated in a 2D Duffing system and a 3D chaotic Lorenz system. The method is also robust to noisy data.