{"title":"胡尔特恩势和非谐波势的超对称展开算法和完整解析解","authors":"M Napsuciale, S Rodríguez, M Kirchbach","doi":"10.1093/ptep/ptae115","DOIUrl":null,"url":null,"abstract":"An algorithm for providing analytical solutions to Schrödinger’s equation with non-exactly solvable potentials is elaborated. It represents a symbiosis between the logarithmic expansion method and the techniques of the supersymmetric quantum mechanics as extended toward non shape invariant potentials. The complete solution to a given Hamiltonian H0 is obtained from the nodeless states of the Hamiltonian H0 and of a set of supersymmetric partners H1, H2, …, Hr. The nodeless states (dubbed “edge” states) are unique and in general can be ground or excited states. They are solved using the logarithmic expansion which yields an infinite system of coupled first order hierarchical differential equations, converted later into algebraic equations with recurrence relations which can be solved order by order. We formulate the aforementioned scheme, termed to as “Supersymmetric Expansion Algorithm” step by step and apply it to obtain for the first time the complete analytical solutions of the three dimensional Hulthén–, and the one-dimensional anharmonic oscillator potentials.","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":"171 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supersymmetric Expansion Algorithm and Complete Analytical Solution for the Hulthén and Anharmonic Potentials\",\"authors\":\"M Napsuciale, S Rodríguez, M Kirchbach\",\"doi\":\"10.1093/ptep/ptae115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for providing analytical solutions to Schrödinger’s equation with non-exactly solvable potentials is elaborated. It represents a symbiosis between the logarithmic expansion method and the techniques of the supersymmetric quantum mechanics as extended toward non shape invariant potentials. The complete solution to a given Hamiltonian H0 is obtained from the nodeless states of the Hamiltonian H0 and of a set of supersymmetric partners H1, H2, …, Hr. The nodeless states (dubbed “edge” states) are unique and in general can be ground or excited states. They are solved using the logarithmic expansion which yields an infinite system of coupled first order hierarchical differential equations, converted later into algebraic equations with recurrence relations which can be solved order by order. We formulate the aforementioned scheme, termed to as “Supersymmetric Expansion Algorithm” step by step and apply it to obtain for the first time the complete analytical solutions of the three dimensional Hulthén–, and the one-dimensional anharmonic oscillator potentials.\",\"PeriodicalId\":20710,\"journal\":{\"name\":\"Progress of Theoretical and Experimental Physics\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress of Theoretical and Experimental Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptae115\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae115","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Supersymmetric Expansion Algorithm and Complete Analytical Solution for the Hulthén and Anharmonic Potentials
An algorithm for providing analytical solutions to Schrödinger’s equation with non-exactly solvable potentials is elaborated. It represents a symbiosis between the logarithmic expansion method and the techniques of the supersymmetric quantum mechanics as extended toward non shape invariant potentials. The complete solution to a given Hamiltonian H0 is obtained from the nodeless states of the Hamiltonian H0 and of a set of supersymmetric partners H1, H2, …, Hr. The nodeless states (dubbed “edge” states) are unique and in general can be ground or excited states. They are solved using the logarithmic expansion which yields an infinite system of coupled first order hierarchical differential equations, converted later into algebraic equations with recurrence relations which can be solved order by order. We formulate the aforementioned scheme, termed to as “Supersymmetric Expansion Algorithm” step by step and apply it to obtain for the first time the complete analytical solutions of the three dimensional Hulthén–, and the one-dimensional anharmonic oscillator potentials.
期刊介绍:
Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan.
PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013.
PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics.
PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.