Keunhong Jeong, Ji Hyun Nam, Seul Lee, Jahyun Koo, Jooyeon Lee, Donghyun Yu, Seongil Jo, Jaeoh Kim
{"title":"利用基于高斯过程的贝叶斯核机器回归和类似于 LASSO 的尖峰和实验室超先验预测材料闪点","authors":"Keunhong Jeong, Ji Hyun Nam, Seul Lee, Jahyun Koo, Jooyeon Lee, Donghyun Yu, Seongil Jo, Jaeoh Kim","doi":"10.1002/cem.3586","DOIUrl":null,"url":null,"abstract":"<p>The determination of flash points is a critical aspect of chemical safety, essential for assessing explosion hazards and fire risks associated with flammable solutions. With the advent of new chemical blends and the increasing complexity of chemical waste management, the need for accurate and reliable flash point prediction methods has become more pronounced. This study introduces a novel predictive approach using Bayesian kernel machine regression (BKMR) with Gaussian process priors, designed to meet the growing demand for precise flash point estimation in the context of chemical safety. The BKMR model, underpinned by Bayesian statistics, offers a comprehensive framework that not only quantifies prediction uncertainty but also enhances interpretability amidst experimental data variability. Our comparative analysis reveals that BKMR surpasses traditional predictive models, including support vector machines, kernel ridge regression, and Gaussian process regression, in terms of accuracy and reliability across multiple metrics. By elucidating the intricate interactions between molecular features and flash point properties, the BKMR model provides profound insights into the chemical dynamics that influence flash point determinations. This study signifies a methodological leap in flash point prediction, offering a valuable tool for chemical safety analysis and contributing to the development of safer chemical handling and storage practices.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"38 10","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3586","citationCount":"0","resultStr":"{\"title\":\"Prediction of Flash Point of Materials Using Bayesian Kernel Machine Regression Based on Gaussian Processes With LASSO-Like Spike-and-Slab Hyperprior\",\"authors\":\"Keunhong Jeong, Ji Hyun Nam, Seul Lee, Jahyun Koo, Jooyeon Lee, Donghyun Yu, Seongil Jo, Jaeoh Kim\",\"doi\":\"10.1002/cem.3586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The determination of flash points is a critical aspect of chemical safety, essential for assessing explosion hazards and fire risks associated with flammable solutions. With the advent of new chemical blends and the increasing complexity of chemical waste management, the need for accurate and reliable flash point prediction methods has become more pronounced. This study introduces a novel predictive approach using Bayesian kernel machine regression (BKMR) with Gaussian process priors, designed to meet the growing demand for precise flash point estimation in the context of chemical safety. The BKMR model, underpinned by Bayesian statistics, offers a comprehensive framework that not only quantifies prediction uncertainty but also enhances interpretability amidst experimental data variability. Our comparative analysis reveals that BKMR surpasses traditional predictive models, including support vector machines, kernel ridge regression, and Gaussian process regression, in terms of accuracy and reliability across multiple metrics. By elucidating the intricate interactions between molecular features and flash point properties, the BKMR model provides profound insights into the chemical dynamics that influence flash point determinations. This study signifies a methodological leap in flash point prediction, offering a valuable tool for chemical safety analysis and contributing to the development of safer chemical handling and storage practices.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"38 10\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3586\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3586\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3586","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
Prediction of Flash Point of Materials Using Bayesian Kernel Machine Regression Based on Gaussian Processes With LASSO-Like Spike-and-Slab Hyperprior
The determination of flash points is a critical aspect of chemical safety, essential for assessing explosion hazards and fire risks associated with flammable solutions. With the advent of new chemical blends and the increasing complexity of chemical waste management, the need for accurate and reliable flash point prediction methods has become more pronounced. This study introduces a novel predictive approach using Bayesian kernel machine regression (BKMR) with Gaussian process priors, designed to meet the growing demand for precise flash point estimation in the context of chemical safety. The BKMR model, underpinned by Bayesian statistics, offers a comprehensive framework that not only quantifies prediction uncertainty but also enhances interpretability amidst experimental data variability. Our comparative analysis reveals that BKMR surpasses traditional predictive models, including support vector machines, kernel ridge regression, and Gaussian process regression, in terms of accuracy and reliability across multiple metrics. By elucidating the intricate interactions between molecular features and flash point properties, the BKMR model provides profound insights into the chemical dynamics that influence flash point determinations. This study signifies a methodological leap in flash point prediction, offering a valuable tool for chemical safety analysis and contributing to the development of safer chemical handling and storage practices.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.